An Algorithm for a Linear Diophantine Equation and a Problem of Frobenius.
The multiparametric 0-1-Integer Programming (0-1-IP) problem relative to the objective function is a family of 0-1-IP problems which are related by having identical constraint matrix and right-hand-side vector. In this paper we present an algorithm to perform a complete multiparametric analysis relative to a generalized min max objective function such that the min sum and min max are particular cases.
The multiparametric min max 0-1-Integer Programming (0-1-IP) problem relative to the objective function is a family of min max 0-1-IP problems which are related by having identical constraint matrix and right-hand-side vector. In this paper we present an algorithm to perform a complete multiparametric analysis relative to the objective function.
The multiparametric min max 0-1-Integer Programming (0-1-IP) problem relative to the objective function is a family of min max 0-1-IP problems which are related by having identical constraint matrix and right-hand-side vector. In this paper we present an algorithm to perform a complete multiparametric analysis relative to the objective function.
In the present paper a complete procedure for solving Multiple Objective Integer Linear Programming Problems is presented. The algorithm can be regarded as a corrected form and an alternative to the method that was proposed by Gupta and Malhotra. A numerical illustration is given to show that this latter can miss some efficient solutions. Whereas, the algorithm stated bellow determines all efficient solutions without missing any one.
In the present paper a complete procedure for solving Multiple Objective Integer Linear Programming Problems is presented. The algorithm can be regarded as a corrected form and an alternative to the method that was proposed by Gupta and Malhotra. A numerical illustration is given to show that this latter can miss some efficient solutions. Whereas, the algorithm stated bellow determines all efficient solutions without missing any one.
The risk of demand or production cost disruption is one of the challenging problems in the supply chain management. This paper explores a generalized supply chain game model incorporating the possible disruptions. We find that a nonlinear Grove wholesale price scheme can fully coordinate such a supply chain even when both market demand and production cost are disrupted. The nonlinear Grove wholesale price scheme has three sides to coordinate the decision behavior of the players. One is that the...