The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Page 1 Next

Displaying 1 – 20 of 29

Showing per page

Quadratic 0–1 programming: Tightening linear or quadratic convex reformulation by use of relaxations

Alain Billionnet, Sourour Elloumi, Marie-Christine Plateau (2008)

RAIRO - Operations Research

Many combinatorial optimization problems can be formulated as the minimization of a 0–1 quadratic function subject to linear constraints. In this paper, we are interested in the exact solution of this problem through a two-phase general scheme. The first phase consists in reformulating the initial problem either into a compact mixed integer linear program or into a 0–1 quadratic convex program. The second phase simply consists in submitting the reformulated problem to a standard solver. The efficiency...

Quantitative concentration inequalities on sample path space for mean field interaction

François Bolley (2010)

ESAIM: Probability and Statistics

We consider the approximation of a mean field stochastic process by a large interacting particle system. We derive non-asymptotic large deviation bounds measuring the concentration of the empirical measure of the paths of the particles around the law of the process. The method is based on a coupling argument, strong integrability estimates on the paths in Hölder norm, and a general concentration result for the empirical measure of identically distributed independent paths.

Quantized cooperative output regulation of continuous-time multi-agent systems over switching graph

Ji Ma, Bo Yang, Jiayu Qiu, Ziqin Chen, Wenfeng Hu (2024)

Kybernetika

This paper investigates the problem of quantized cooperative output regulation of linear multi-agent systems with switching graphs. A novel dynamic encoding-decoding scheme with a finite communication bandwidth is designed. Leveraging this scheme, a distributed protocol is proposed, ensuring asymptotic convergence of the tracking error under both bounded and unbounded link failure durations. Compared with the existing quantized control work of MASs, the semi-global assumption of initial conditions...

Quantum optimal control using the adjoint method

Alfio Borzì (2012)

Nanoscale Systems: Mathematical Modeling, Theory and Applications

Control of quantum systems is central in a variety of present and perspective applications ranging from quantum optics and quantum chemistry to semiconductor nanostructures, including the emerging fields of quantum computation and quantum communication. In this paper, a review of recent developments in the field of optimal control of quantum systems is given with a focus on adjoint methods and their numerical implementation. In addition, the issues of exact controllability and optimal control are...

Currently displaying 1 – 20 of 29

Page 1 Next