A decomposition heuristic for the maximal covering location problem.
A recently introduced dualization technique for binary linear programs with equality constraints, essentially due to Poljak et al. [13], and further developed in Lemaréchal and Oustry [9], leads to simple alternative derivations of well-known, important relaxations to two well-known problems of discrete optimization: the maximum stable set problem and the maximum vertex cover problem. The resulting relaxation is easily transformed to the well-known Lovász number.
A recently introduced dualization technique for binary linear programs with equality constraints, essentially due to Poljak et al. [13], and further developed in Lemaréchal and Oustry [9], leads to simple alternative derivations of well-known, important relaxations to two well-known problems of discrete optimization: the maximum stable set problem and the maximum vertex cover problem. The resulting relaxation is easily transformed to the well-known Lovász θ number.
In this paper a two-stage algorithm for finding non- dominated subsets of partially ordered sets is established. A connection is then made with dimension reduction in time-dependent dynamic programming via the notion of a bounding label, a function that bounds the state-transition cost functions. In this context, the computational burden is partitioned between a time-independent dynamic programming step carried out on the bounding label and a direct evaluation carried out on a subset of “real” valued...
In this paper a two-stage algorithm for finding non- dominated subsets of partially ordered sets is established. A connection is then made with dimension reduction in time-dependent dynamic programming via the notion of a bounding label, a function that bounds the state-transition cost functions. In this context, the computational burden is partitioned between a time-independent dynamic programming step carried out on the bounding label and a direct evaluation carried out on a subset of “real"...
The aim of this paper is to develop a crowd motion model designed to handle highly packed situations. The model we propose rests on two principles: we first define a spontaneous velocity which corresponds to the velocity each individual would like to have in the absence of other people. The actual velocity is then computed as the projection of the spontaneous velocity onto the set of admissible velocities (i.e. velocities which do not violate the non-overlapping constraint). We describe here the...
The aim of this paper is to develop a crowd motion model designed to handle highly packed situations. The model we propose rests on two principles: we first define a spontaneous velocity which corresponds to the velocity each individual would like to have in the absence of other people. The actual velocity is then computed as the projection of the spontaneous velocity onto the set of admissible velocities (i.e. velocities which do not violate the non-overlapping constraint). We describe here...