Page 1

Displaying 1 – 4 of 4

Showing per page

Mixing conditions for multivariate infinitely divisible processes with an application to mixed moving averages and the supOU stochastic volatility model

Florian Fuchs, Robert Stelzer (2013)

ESAIM: Probability and Statistics

We consider strictly stationary infinitely divisible processes and first extend the mixing conditions given in Maruyama [Theory Probab. Appl. 15 (1970) 1–22] and Rosiński and Żak [Stoc. Proc. Appl. 61 (1996) 277–288] from the univariate to the d-dimensional case. Thereafter, we show that multivariate Lévy-driven mixed moving average processes satisfy these conditions and hence a wide range of well-known processes such as superpositions of Ornstein − Uhlenbeck (supOU) processes or (fractionally integrated)...

Modelling financial time series using reflections of copulas

Jozef Komorník, Magda Komorníková (2013)

Kybernetika

We have intensified studies of reflections of copulas (that we introduced recently in [6]) and found that their convex combinations exhibit potentially useful fitting properties for original copulas of the Normal, Frank, Clayton and Gumbel types. We show that these properties enable us to construct interesting models for the relations between investment in stocks and gold.

Multivariate extensions of expectiles risk measures

Véronique Maume-Deschamps, Didier Rullière, Khalil Said (2017)

Dependence Modeling

This paper is devoted to the introduction and study of a new family of multivariate elicitable risk measures. We call the obtained vector-valued measures multivariate expectiles. We present the different approaches used to construct our measures. We discuss the coherence properties of these multivariate expectiles. Furthermore, we propose a stochastic approximation tool of these risk measures.

Currently displaying 1 – 4 of 4

Page 1