Warranty optimization in a dynamic environment.
For a class of anisotropic integrodifferential operators arising as semigroup generators of Markov processes, we present a sparse tensor product wavelet compression scheme for the Galerkin finite element discretization of the corresponding integrodifferential equations u = f on [0,1]n with possibly large n. Under certain conditions on , the scheme is of essentially optimal and dimension independent complexity (h-1| log h |2(n-1)) without corrupting the convergence or smoothness requirements...
Wavelets (see [2, 3, 4]) are a recent mathematical tool that is applied in signal processing, numerical mathematics and statistics. The wavelet transform allows to follow data in the frequency as well as time domain, to compute efficiently the wavelet coefficients using fast algorithm, to separate approximations from details. Due to these properties, the wavelet transform is suitable for analyzing and forecasting in time series. In this paper, Box-Jenkins models (see [1, 5]) combined with wavelets...