Displaying 141 – 160 of 204

Showing per page

On the dynamics of a vaccination model with multiple transmission ways

Shu Liao, Weiming Yang (2013)

International Journal of Applied Mathematics and Computer Science

In this paper, we present a vaccination model with multiple transmission ways and derive the control reproduction number. The stability analysis of both the disease-free and endemic equilibria is carried out, and bifurcation theory is applied to explore a variety of dynamics of this model. In addition, we present numerical simulations to verify the model predictions. Mathematical results suggest that vaccination is helpful for disease control by decreasing the control reproduction number below unity....

On the Mathematical Modelling of Microbial Growth: Some Computational Aspects

Markov, Svetoslav (2011)

Serdica Journal of Computing

We propose a new approach to the mathematical modelling of microbial growth. Our approach differs from familiar Monod type models by considering two phases in the physiological states of the microorganisms and makes use of basic relations from enzyme kinetics. Such an approach may be useful in the modelling and control of biotechnological processes, where microorganisms are used for various biodegradation purposes and are often put under extreme inhibitory conditions. Some computational experiments are...

Optimal solutions for a model of tumor anti-angiogenesis with a penalty on the cost of treatment

Urszula Ledzewicz, Vignon Oussa, Heinz Schättler (2009)

Applicationes Mathematicae

The scheduling of angiogenic inhibitors to control a vascularized tumor is analyzed as an optimal control problem for a mathematical model that was developed and biologically validated by Hahnfeldt et al. [Cancer Res. 59 (1999)]. Two formulations of the problem are considered. In the first one the primary tumor volume is minimized for a given amount of angiogenic inhibitors to be administered, while a balance between tumor reduction and the total amount of angiogenic inhibitors given is minimized...

Past, Present and Future of Brain Stimulation

J. Modolo, R. Edwards, J. Campagnaud, B. Bhattacharya, A. Beuter (2010)

Mathematical Modelling of Natural Phenomena

Recent technological advances including brain imaging (higher resolution in space and time), miniaturization of integrated circuits (nanotechnologies), and acceleration of computation speed (Moore’s Law), combined with interpenetration between neuroscience, mathematics, and physics have led to the development of more biologically plausible computational models and novel therapeutic strategies. Today, mathematical models of irreversible medical conditions...

Periodic systems largely system equivalent to periodic discrete-time processes

Osvaldo Maria Grasselli, Sauro Longhi, Antonio Tornambè (2001)

Kybernetika

In this paper, the problem of obtaining a periodic model in state-space form of a linear process that can be modeled by linear difference equations with periodic coefficients is considered. Such a problem was already studied and solved in [r71] on the basis of the notion of system equivalence, but under the assumption that the process has no null characteristic multiplier. In this paper such an assumption is removed in order to generalize the results in [r71] to linear periodic processes with possibly...

Planning identification experiments for cell signaling pathways: An NFκB case study

Krzysztof Fujarewicz (2010)

International Journal of Applied Mathematics and Computer Science

Mathematical modeling of cell signaling pathways has become a very important and challenging problem in recent years. The importance comes from possible applications of obtained models. It may help us to understand phenomena appearing in single cells and cell populations on a molecular level. Furthermore, it may help us with the discovery of new drug therapies. Mathematical models of cell signaling pathways take different forms. The most popular way of mathematical modeling is to use a set of nonlinear...

Plant Growth and Development - Basic Knowledge and Current Views

V. Brukhin, N. Morozova (2010)

Mathematical Modelling of Natural Phenomena

One of the most intriguing questions in life science is how living organisms develop and maintain their predominant form and shape via the cascade of the processes of differentiation starting from the single cell. Mathematical modeling of these developmental processes could be a very important tool to properly describe the complex processes of evolution and geometry of morphogenesis in time and space. Here, we summarize the most important biological knowledge on plant development, exploring the...

Positive and Negative Feedback in Engineering and Biology

E. S. Zeron (2008)

Mathematical Modelling of Natural Phenomena

No other concepts have shaken so deeply the bases of engineering like those of positive and negative feedback. They have played a most prominent role in engineering since the beginning of the previous century. The birth certificate of positive feedback can be traced back to a pair of patents by Edwin H. Armstrong in 1914 and 1922, whereas that of negative feedback is already lost in time. We present in this paper a short review on the feedback's origins in the fields of engineering and biology....

Prescribed performance control of underactuated surface vessels' trajectory using a neural network and integral time-delay sliding mode

Yun Chen, Hua Chen (2023)

Kybernetika

To tackle the underactuated surface vessel (USV) trajectory tracking challenge with input delays and composite disturbances, an integral time-delay sliding mode controller based on backstepping is discussed. First, the law of virtual velocity control is established by coordinate transformation and the position error is caused to converge utilizing the performance function. At the same time, based on the estimation of velocity vector by the high-gain observer (HGO), radial basis function (RBF) neural...

Quantitative Analysis of Melanocyte Migration in vitro Based on Automated Cell Tracking under Phase Contrast Microscopy Considering the Combined Influence of Cell Division and Cell-Matrix Interactions

V. Letort, S. Fouliard, G. Letort, I. Adanja, M. Kumasaka, S. Gallagher, O. Debeir, L. Larue, F. Xavier (2010)

Mathematical Modelling of Natural Phenomena

The aim of this study was to describe and analyze the regulation and spatio-temporal dynamics of melanocyte migration in vitro and its coupling to cell division and interaction with the matrix. The melanocyte lineage is particularly interesting because it is involved in both embryonic development and oncogenesis/metastasis (melanoma). Biological experiments were performed on two melanocyte cell lines established from wild-type and β-catenin-transgenic...

Reaching phase elimination in variable structure control of the third order system with state constraints

Andrzej Bartoszewicz, A. Nowacka (2006)

Kybernetika

In this paper the design of a time varying switching plane for the sliding mode control of the third order system subject to the velocity and acceleration constraints is considered. Initially the plane passes through the system representative point in the error state space and then it moves with a constant velocity to the origin of the space. Having reached the origin the plane stops and remains motionless. The plane parameters (determining angles of inclination and the velocity of its motion) are...

Reduced resistive MHD in Tokamaks with general density

Bruno Després, Rémy Sart (2012)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

The aim of this paper is to derive a general model for reduced viscous and resistive Magnetohydrodynamics (MHD) and to study its mathematical structure. The model is established for arbitrary density profiles in the poloidal section of the toroidal geometry of Tokamaks. The existence of global weak solutions, on the one hand, and the stability of the fundamental mode around initial data, on the other hand, are investigated.

Reduced resistive MHD in Tokamaks with general density

Bruno Després, Rémy Sart (2012)

ESAIM: Mathematical Modelling and Numerical Analysis

The aim of this paper is to derive a general model for reduced viscous and resistive Magnetohydrodynamics (MHD) and to study its mathematical structure. The model is established for arbitrary density profiles in the poloidal section of the toroidal geometry of Tokamaks. The existence of global weak solutions, on the one hand, and the stability of the fundamental mode around initial data, on the other hand, are investigated.

Currently displaying 141 – 160 of 204