Displaying 41 – 60 of 210

Showing per page

A hierarchy for circular codes

Giuseppe Pirillo (2008)

RAIRO - Theoretical Informatics and Applications

We first prove an extremal property of the infinite Fibonacci* word f: the family of the palindromic prefixes {hn | n ≥ 6} of f is not only a circular code but “almost” a comma-free one (see Prop. 12 in Sect. 4). We also extend to a more general situation the notion of a necklace introduced for the study of trinucleotides codes on the genetic alphabet, and we present a hierarchy relating two important classes of codes, the comma-free codes and the circular ones.

A large family of Boolean functions

Huaning Liu, Min Zhang (2016)

Acta Arithmetica

In a series of papers many Boolean functions with good cryptographic properties were constructed using number-theoretic methods. We construct a large family of Boolean functions by using polynomials over finite fields, and study their cryptographic properties: maximum Fourier coefficient, nonlinearity, average sensitivity, sparsity, collision and avalanche effect.

A log-Sobolev type inequality for free entropy of two projections

Fumio Hiai, Yoshimichi Ueda (2009)

Annales de l'I.H.P. Probabilités et statistiques

We prove a kind of logarithmic Sobolev inequality claiming that the mutual free Fisher information dominates the microstate free entropy adapted to projections in the case of two projections.

A modified convolution and product theorem for the linear canonical transform derived by representation transformation in quantum mechanics

Navdeep Goel, Kulbir Singh (2013)

International Journal of Applied Mathematics and Computer Science

The Linear Canonical Transform (LCT) is a four parameter class of integral transform which plays an important role in many fields of signal processing. Well-known transforms such as the Fourier Transform (FT), the FRactional Fourier Transform (FRFT), and the FreSnel Transform (FST) can be seen as special cases of the linear canonical transform. Many properties of the LCT are currently known but the extension of FRFTs and FTs still needs more attention. This paper presents a modified convolution...

A multiplication theorem for two-variable positive real matrices

Fazlollah M. Reza (1985)

Aplikace matematiky

A multiplication-division theorem is derived for the positive real functions of two complex variables. The theorem is generalized to encompass the product of positive real functions of two complex variables. The theorem is generalized to encompass the product of positive real matrices whose elements are functions of two complex variables. PRF and PR matrices occur frequantly in the study of electrical multiports and multivariable systems (such as digital filters).

A Necessary and Sufficient Condition for the Existence of an (n,r)-arc in PG(2,q) and Its Applications

Hamada, Noboru, Maruta, Tatsuya, Oya, Yusuke (2012)

Serdica Journal of Computing

ACM Computing Classification System (1998): E.4.Let q be a prime or a prime power ≥ 3. The purpose of this paper is to give a necessary and sufficient condition for the existence of an (n, r)-arc in PG(2, q ) for given integers n, r and q using the geometric structure of points and lines in PG(2, q ) for n > r ≥ 3. Using the geometric method and a computer, it is shown that there exists no (34, 3) arc in PG(2, 17), equivalently, there exists no [34, 3, 31] 17 code.This research was partially...

Currently displaying 41 – 60 of 210