An efficient VLSI linear array for DCT/IDCT using subband decomposition algorithm.
We denoted by nq(k, d), the smallest value of n for which an [n, k, d]q code exists for given q, k, d. Since nq(k, d) = gq(k, d) for all d ≥ dk + 1 for q ≥ k ≥ 3, it is a natural question whether the Griesmer bound is attained or not for d = dk , where gq(k, d) = ∑[d/q^i], i=0,...,k-1, dk = (k − 2)q^(k−1) − (k − 1)q^(k−2). It was shown by Dodunekov [2] and Maruta [9], [10] that there is no [gq(k, dk ), k, dk ]q code for q ≥ k, k = 3, 4, 5 and for q ≥ 2k − 3, k ≥ 6. The purpose of this paper...
We generalize the Strong Boneh-Boyen (SBB) signature scheme to sign vectors; we call this scheme GSBB. We show that if a particular (but most natural) average case reduction from SBB to GSBB exists, then the Strong Diffie-Hellman (SDH) and the Computational Diffie-Hellman (CDH) have the same worst-case complexity.
This paper presents an identification method of dynamic systems based on a group method of data handling approach. In particular, a new structure of the dynamic multi-input multi-output neuron in a state-space representation is proposed. Moreover, a new training algorithm of the neural network based on the unscented Kalman filter is presented. The final part of the work contains an illustrative example regarding the application of the proposed approach to robust fault detection of a tunnel furnace....
Fuzzy clustering can be helpful in finding natural vague boundaries in data. The fuzzy c-means method is one of the most popular clustering methods based on minimization of a criterion function. However, one of the greatest disadvantages of this method is its sensitivity to the presence of noise and outliers in the data. The present paper introduces a new ε-insensitive Fuzzy C-Means (εFCM) clustering algorithm. As a special case, this algorithm includes the well-known Fuzzy C-Medians method (FCMED)....
The notion of non-orthogonal multi-resolution analysis and its compatibility with differentiation (as expressed by the commutation formula) lead us to the construction of a multi-resolution analysis of L2(Rn)n which is well adapted to the approximation of divergence-free vector functions. Thus, we obtain unconditional bases of compactly supported divergence-free vector wavelets.
This paper studies the gradient flow of a regularized Mumford-Shah functional proposed by Ambrosio and Tortorelli (1990, 1992) for image segmentation, and adopted by Esedoglu and Shen (2002) for image inpainting. It is shown that the gradient flow with initial data possesses a global weak solution, and it has a unique global in time strong solution, which has at most finite number of point singularities in the space-time, when the initial data are in . A family of fully discrete approximation...
This paper studies the gradient flow of a regularized Mumford-Shah functional proposed by Ambrosio and Tortorelli (1990, 1992) for image segmentation, and adopted by Esedoglu and Shen (2002) for image inpainting. It is shown that the gradient flow with L2 x L∞ initial data possesses a global weak solution, and it has a unique global in time strong solution, which has at most finite number of point singularities in the space-time, when the initial data are in H1 x H1 ∩ L∞. A family of fully...
We study the gradient flow for the total variation functional, which arises in image processing and geometric applications. We propose a variational inequality weak formulation for the gradient flow, and establish well-posedness of the problem by the energy method. The main idea of our approach is to exploit the relationship between the regularized gradient flow (characterized by a small positive parameter , and the minimal surface flow [21] and the prescribed mean curvature flow [16]. Since our...