Page 1

Displaying 1 – 4 of 4

Showing per page

Classification of Maximal Optical Orthogonal Codes of Weight 3 and Small Lengths

Baicheva, Tsonka, Topalova, Svetlana (2015)

Serdica Journal of Computing

Dedicated to the memory of the late professor Stefan Dodunekov on the occasion of his 70th anniversary. We classify up to multiplier equivalence maximal (v, 3, 1) optical orthogonal codes (OOCs) with v ≤ 61 and maximal (v, 3, 2, 1) OOCs with v ≤ 99. There is a one-to-one correspondence between maximal (v, 3, 1) OOCs, maximal cyclic binary constant weight codes of weight 3 and minimum dis tance 4, (v, 3; ⌊(v − 1)/6⌋) difference packings, and maximal (v, 3, 1) binary cyclically permutable constant...

Codes that attain minimum distance in every possible direction

Gyula Katona, Attila Sali, Klaus-Dieter Schewe (2008)

Open Mathematics

The following problem motivated by investigation of databases is studied. Let 𝒞 be a q-ary code of length n with the properties that 𝒞 has minimum distance at least n − k + 1, and for any set of k − 1 coordinates there exist two codewords that agree exactly there. Let f(q, k)be the maximum n for which such a code exists. f(q, k)is bounded by linear functions of k and q, and the exact values for special k and qare determined.

Currently displaying 1 – 4 of 4

Page 1