The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Page 1

Displaying 1 – 7 of 7

Showing per page

On extremal additive 𝔽 4 codes of length 10 to 18

Christine Bachoc, Philippe Gaborit (2000)

Journal de théorie des nombres de Bordeaux

In this paper we consider the extremal even self-dual 𝔽 4 -additive codes. We give a complete classification for length 10 . Under the hypothesis that at least two minimal words have the same support, we classify the codes of length 14 and we show that in length 18 such a code is equivalent to the unique 𝔽 4 -hermitian code with parameters [18,9,8]. We construct with the help of them some extremal 3 -modular lattices.

Optimal Locating-Total Dominating Sets in Strips of Height 3

Ville Junnila (2015)

Discussiones Mathematicae Graph Theory

A set C of vertices in a graph G = (V,E) is total dominating in G if all vertices of V are adjacent to a vertex of C. Furthermore, if a total dominating set C in G has the additional property that for any distinct vertices u, v ∈ V C the subsets formed by the vertices of C respectively adjacent to u and v are different, then we say that C is a locating-total dominating set in G. Previously, locating-total dominating sets in strips have been studied by Henning and Jafari Rad (2012). In particular,...

Currently displaying 1 – 7 of 7

Page 1