Displaying 21 – 40 of 425

Showing per page

The Arkhangel’skiĭ–Tall problem: a consistent counterexample

Gary Gruenhage, Piotr Koszmider (1996)

Fundamenta Mathematicae

We construct a consistent example of a normal locally compact metacompact space which is not paracompact, answering a question of A. V. Arkhangel’skiĭ and F. Tall. An interplay between a tower in P(ω)/Fin, an almost disjoint family in [ ω ] ω , and a version of an (ω,1)-morass forms the core of the proof. A part of the poset which forces the counterexample can be considered a modification of a poset due to Judah and Shelah for obtaining a Q-set by a countable support iteration.

The Arkhangel'skiĭ–Tall problem under Martin’s Axiom

Gary Gruenhage, Piotr Koszmider (1996)

Fundamenta Mathematicae

We show that MA σ - c e n t e r e d ( ω 1 ) implies that normal locally compact metacompact spaces are paracompact, and that MA( ω 1 ) implies normal locally compact metalindelöf spaces are paracompact. The latter result answers a question of S. Watson. The first result implies that there is a model of set theory in which all normal locally compact metacompact spaces are paracompact, yet there is a normal locally compact metalindelöf space which is not paracompact.

The Axiomatization of Propositional Logic

Mariusz Giero (2016)

Formalized Mathematics

This article introduces propositional logic as a formal system ([14], [10], [11]). The formulae of the language are as follows φ ::= ⊥ | p | φ → φ. Other connectives are introduced as abbrevations. The notions of model and satisfaction in model are defined. The axioms are all the formulae of the following schemes α ⇒ (β ⇒ α), (α ⇒ (β ⇒ γ)) ⇒ ((α ⇒ β) ⇒ (α ⇒ γ)), (¬β ⇒ ¬α) ⇒ ((¬β ⇒ α) ⇒ β). Modus ponens is the only derivation rule. The soundness theorem and the strong completeness theorem are proved....

The axioms for implication in orthologic

Ivan Chajda (2008)

Czechoslovak Mathematical Journal

We set up axioms characterizing logical connective implication in a logic derived by an ortholattice. It is a natural generalization of an orthoimplication algebra given by J. C. Abbott for a logic derived by an orthomodular lattice.

The Banach-Tarski paradox for the hyperbolic plane (II)

Jan Mycielski, Grzegorz Tomkowicz (2013)

Fundamenta Mathematicae

The second author found a gap in the proof of the main theorem in [J. Mycielski, Fund. Math. 132 (1989), 143-149]. Here we fill that gap and add some remarks about the geometry of the hyperbolic plane ℍ².

Currently displaying 21 – 40 of 425