Displaying 381 – 400 of 425

Showing per page

Transitive decomposition of fuzzy preference relations: the case of nilpotent minimum

Susana Díaz, Susana Montes, Bernard De Baets (2004)

Kybernetika

Transitivity is a fundamental notion in preference modelling. In this work we study this property in the framework of additive fuzzy preference structures. In particular, we depart from a large preference relation that is transitive w.r.t. the nilpotent minimum t-norm and decompose it into an indifference and strict preference relation by means of generators based on t-norms, i. e. using a Frank t-norm as indifference generator. We identify the strongest type of transitivity these indifference and...

Transitive Properties of Ideals on Generalized Cantor Spaces

Jan Kraszewski (2004)

Bulletin of the Polish Academy of Sciences. Mathematics

We compute transitive cardinal coefficients of ideals on generalized Cantor spaces. In particular, we show that there exists a null set A 2 ω such that for every null set B 2 ω we can find x 2 ω such that A ∪ (A+x) cannot be covered by any translation of B.

Tree Automata and Automata on Linear Orderings

Véronique Bruyère, Olivier Carton, Géraud Sénizergues (2009)

RAIRO - Theoretical Informatics and Applications

We show that the inclusion problem is decidable for rational languages of words indexed by scattered countable linear orderings. The method leans on a reduction to the decidability of the monadic second order theory of the infinite binary tree [9].

Triangulation in o-minimal fields with standard part map

Lou van den Dries, Jana Maříková (2010)

Fundamenta Mathematicae

In answering questions of J. Maříková [Fund. Math. 209 (2010)] we prove a triangulation result that is of independent interest. In more detail, let R be an o-minimal field with a proper convex subring V, and let st: V → k be the corresponding standard part map. Under a mild assumption on (R,V) we show that a definable set X ⊆ Vⁿ admits a triangulation that induces a triangulation of its standard part st X ⊆ kⁿ.

Turning Borel sets into clopen sets effectively

Vassilios Gregoriades (2012)

Fundamenta Mathematicae

We present the effective version of the theorem about turning Borel sets in Polish spaces into clopen sets while preserving the Borel structure of the underlying space. We show that under some conditions the emerging parameters can be chosen in a hyperarithmetical way and using this we obtain some uniformity results.

T-Varieties and Clones of T-terms

Klaus Denecke, Prakit Jampachon (2005)

Discussiones Mathematicae - General Algebra and Applications

The aim of this paper is to describe how varieties of algebras of type τ can be classified by using the form of the terms which build the (defining) identities of the variety. There are several possibilities to do so. In [3], [19], [15] normal identities were considered, i.e. identities which have the form x ≈ x or s ≈ t, where s and t contain at least one operation symbol. This was generalized in [14] to k-normal identities and in [4] to P-compatible identities. More generally, we select a subset...

Two Axiomatizations of Nelson Algebras

Adam Grabowski (2015)

Formalized Mathematics

Nelson algebras were first studied by Rasiowa and Białynicki- Birula [1] under the name N-lattices or quasi-pseudo-Boolean algebras. Later, in investigations by Monteiro and Brignole [3, 4], and [2] the name “Nelson algebras” was adopted - which is now commonly used to show the correspondence with Nelson’s paper [14] on constructive logic with strong negation. By a Nelson algebra we mean an abstract algebra 〈L, T, -, ¬, →, ⇒, ⊔, ⊓〉 where L is the carrier, − is a quasi-complementation (Rasiowa used...

Currently displaying 381 – 400 of 425