Two conjectures regarding the stability of ω-categorical theories
We prove: Theorem 1. Let κ be an uncountable cardinal. Every κ-Suslin graph G on reals satisfies one of the following two requirements: (I) G admits a κ-Borel colouring by ordinals below κ; (II) there exists a continuous homomorphism (in some cases an embedding) of a certain locally countable Borel graph into G. Theorem 2. In the Solovay model, every OD graph G on reals satisfies one of the following two requirements: (I) G admits an OD colouring by countable ordinals; (II) as above.
This paper presents two extensions of the second order polymorphic lambda calculus, system F, with monotone (co)inductive types supporting (co)iteration, primitive (co)recursion and inversion principles as primitives. One extension is inspired by the usual categorical approach to programming by means of initial algebras and final coalgebras; whereas the other models dialgebras, and can be seen as an extension of Hagino's categorical lambda calculus within the framework of parametric polymorphism....
A subset of the plane is called a two point set if it intersects any line in exactly two points. We give constructions of two point sets possessing some additional properties. Among these properties we consider: being a Hamel base, belonging to some -ideal, being (completely) nonmeasurable with respect to different -ideals, being a -covering. We also give examples of properties that are not satisfied by any two point set: being Luzin, Sierpiński and Bernstein set. We also consider natural generalizations...
In this work we study some properties of the twofold integral and, in particular, its relation with the 2-step Choquet integral. First, we prove that the Sugeno integral can be represented as a 2-step Choquet integral. Then, we turn into the twofold integral studying some of its properties, establishing relationships between this integral and the Choquet and Sugeno ones and proving that it can be represented in terms of 2-step Choquet integral.