Algorithmic representations of Wermus' constructions of ordinal numbers
In this Mizar article, we complete the formalization of one of the items from Abad and Abad’s challenge list of “Top 100 Theorems” about Liouville numbers and the existence of transcendental numbers. It is item #18 from the “Formalizing 100 Theorems” list maintained by Freek Wiedijk at http://www.cs.ru.nl/F.Wiedijk/100/. Liouville numbers were introduced by Joseph Liouville in 1844 [15] as an example of an object which can be approximated “quite closely” by a sequence of rational numbers. A real...
We define two cardinal invariants of the continuum which arise naturally from combinatorially and topologically appealing properties of almost disjoint families of sets of the natural numbers. These are the never soft and never countably paracompact numbers. We show that these cardinals must both be equal to under the effective weak diamond principle , answering questions of da Silva S.G., On the presence of countable paracompactness, normality and property in spaces from almost disjoint families,...
We consider the question: when does a Ψ-space satisfy property (a)? We show that if then the Ψ-space Ψ(A) satisfies property (a), but in some Cohen models the negation of CH holds and every uncountable Ψ-space fails to satisfy property (a). We also show that in a model of Fleissner and Miller there exists a Ψ-space of cardinality which has property (a). We extend a theorem of Matveev relating the existence of certain closed discrete subsets with the failure of property (a).
A weak form of the constructively important notion of locatedness is lifted from the context of a metric space to that of a uniform space. Certain fundamental results about almost located and totally bounded sets are then proved.
We prove that the interval topology of an Archimedean atomic lattice effect algebra is Hausdorff whenever the set of all atoms of is almost orthogonal. In such a case is order continuous. If moreover is complete then order convergence of nets of elements of is topological and hence it coincides with convergence in the order topology and this topology is compact Hausdorff compatible with a uniformity induced by a separating function family on corresponding to compact and cocompact elements....
One of the possible models of fuzzification of non-transferable utility (NTU) coalitional games was extensively treated in [4]. In this paper, we suggest an alternative structure of fuzzification of the NTU games, where for every coalition a fuzzy class of (generally crisp) sets of its admissible pay-off vectors is considered. It is shown that this model of a fuzzy coalitional game can be represented by a fuzzy class of deterministic NTU games, and its basic concepts like the superadditivity or...