Displaying 1041 – 1060 of 5971

Showing per page

Complete sequences of coanalytic sets

Riccardo Camerlo (2014)

Fundamenta Mathematicae

The notion of a complete sequence of pairwise disjoint coanalytic sets is investigated. Several examples are given and such sequences are characterised under analytic determinacy. The ideas are based on earlier results of Saint Raymond, and generalise them.

Complete subobjects of fuzzy sets over M V -algebras

Jiří Močkoř (2004)

Czechoslovak Mathematical Journal

A subobjects structure of the category Ω - of Ω -fuzzy sets over a complete M V -algebra Ω = ( L , , , , ) is investigated, where an Ω -fuzzy set is a pair 𝐀 = ( A , δ ) such that A is a set and δ A × A Ω is a special map. Special subobjects (called complete) of an Ω -fuzzy set 𝐀 which can be identified with some characteristic morphisms 𝐀 Ω * = ( L × L , μ ) are then investigated. It is proved that some truth-valued morphisms ¬ Ω Ω * Ω * , Ω , Ω Ω * × Ω * Ω * are characteristic morphisms of complete subobjects.

Completely nonmeasurable unions

Robert Rałowski, Szymon Żeberski (2010)

Open Mathematics

Assume that no cardinal κ < 2ω is quasi-measurable (κ is quasi-measurable if there exists a κ-additive ideal of subsets of κ such that the Boolean algebra P(κ)/ satisfies c.c.c.). We show that for a metrizable separable space X and a proper c.c.c. σ-ideal II of subsets of X that has a Borel base, each point-finite cover ⊆ 𝕀 of X contains uncountably many pairwise disjoint subfamilies , with 𝕀 -Bernstein unions ∪ (a subset A ⊆ X is 𝕀 -Bernstein if A and X A meet each Borel 𝕀 -positive subset...

Complexité de la famille des ensembles de synthèse d'un groupe abélien localement compact

Etienne Matheron (1996)

Studia Mathematica

On montre que si G est un groupe abélien localment compact non diskret à base dénombrable d'ouverts, alors la famille des fermés de synthèse pour l'algèbre de Fourier A(G) est une partie coanalytique non borélienne de ℱ(G), l'ensemble des fermés de G muni de la structure borélienne d'Effros. On généralise ainsi un résultat connu dans le cas du groupe 𝕋.

Complexité des boréliens à coupes dénombrables

Dominique Lecomte (2000)

Fundamenta Mathematicae

Nous donnons, pour chaque niveau de complexité Γ, une caractérisation du type "test d'Hurewicz" des boréliens d'un produit de deux espaces polonais ayant toutes leurs coupes dénombrables ne pouvant pas être rendus Γ par changement des deux topologies polonaises.

Currently displaying 1041 – 1060 of 5971