Displaying 1121 – 1140 of 5971

Showing per page

Constructing Binary Huffman Tree

Hiroyuki Okazaki, Yuichi Futa, Yasunari Shidama (2013)

Formalized Mathematics

Huffman coding is one of a most famous entropy encoding methods for lossless data compression [16]. JPEG and ZIP formats employ variants of Huffman encoding as lossless compression algorithms. Huffman coding is a bijective map from source letters into leaves of the Huffman tree constructed by the algorithm. In this article we formalize an algorithm constructing a binary code tree, Huffman tree.

Constructing universally small subsets of a given packing index in Polish groups

Taras Banakh, Nadya Lyaskovska (2011)

Colloquium Mathematicae

A subset of a Polish space X is called universally small if it belongs to each ccc σ-ideal with Borel base on X. Under CH in each uncountable Abelian Polish group G we construct a universally small subset A₀ ⊂ G such that |A₀ ∩ gA₀| = for each g ∈ G. For each cardinal number κ ∈ [5,⁺] the set A₀ contains a universally small subset A of G with sharp packing index p a c k ( A κ ) = s u p | | : g A g G i s d i s j o i n t equal to κ.

Constructing ω-stable structures: Computing rank

John T. Baldwin, Kitty Holland (2001)

Fundamenta Mathematicae

This is a sequel to [1]. Here we give careful attention to the difficulties of calculating Morley and U-rank of the infinite rank ω-stable theories constructed by variants of Hrushovski's methods. Sample result: For every k < ω, there is an ω-stable expansion of any algebraically closed field which has Morley rank ω × k. We include a corrected proof of the lemma in [1] establishing that the generic model is ω-saturated in the rank 2 case.

Construction methods for implications on bounded lattices

M. Nesibe Kesicioğlu (2019)

Kybernetika

In this paper, the ordinal sum construction methods of implications on bounded lattices are studied. Necessary and sufficient conditions of an ordinal sum for obtaining an implication are presented. New ordinal sum construction methods on bounded lattices which generate implications are discussed. Some basic properties of ordinal sum implications are studied.

Construction methods for uni-nullnorms and null-uninorms on bounded lattice

Ümit Ertuğrul, M. Nesibe Kesicioğlu, Funda Karaçal (2019)

Kybernetika

In this paper, two construction methods have been proposed for uni-nullnorms on any bounded lattices. The difference between these two construction methods and the difference from the existing construction methods have been demonstrated and supported by an example. Moreover, the relationship between our construction methods and the existing construction methods for uninorms and nullnorms on bounded lattices are investigated. The charactertics of null-uninorms on bounded lattice L are given and a...

Construction of Measure from Semialgebra of Sets1

Noboru Endou (2015)

Formalized Mathematics

In our previous article [22], we showed complete additivity as a condition for extension of a measure. However, this condition premised the existence of a σ-field and the measure on it. In general, the existence of the measure on σ-field is not obvious. On the other hand, the proof of existence of a measure on a semialgebra is easier than in the case of a σ-field. Therefore, in this article we define a measure (pre-measure) on a semialgebra and extend it to a measure on a σ-field. Furthermore, we...

Construction of sentences with specific interpretability properties

A. Stern (1993)

Fundamenta Mathematicae

The Rowland Institute for Science, 100 Cambridge Parkway, Cambridge, Massachusetts 02142, U.S.A. A construction is presented for generating sentences that satisfy a recursively enumerable set of interpretability properties. This construction is then used to prove three previously announced results concerning the lattice of local interpretability types of theories (also known as the Lattice of Chapters).

Construction of tree automata from regular expressions

Dietrich Kuske, Ingmar Meinecke (2011)

RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications

Since recognizable tree languages are closed under the rational operations, every regular tree expression denotes a recognizable tree language. We provide an alternative proof to this fact that results in smaller tree automata. To this aim, we transfer Antimirov's partial derivatives from regular word expressions to regular tree expressions. For an analysis of the size of the resulting automaton as well as for algorithmic improvements, we also transfer the methods of Champarnaud and Ziadi from words...

Construction of tree automata from regular expressions

Dietrich Kuske, Ingmar Meinecke (2011)

RAIRO - Theoretical Informatics and Applications

Since recognizable tree languages are closed under the rational operations, every regular tree expression denotes a recognizable tree language. We provide an alternative proof to this fact that results in smaller tree automata. To this aim, we transfer Antimirov's partial derivatives from regular word expressions to regular tree expressions. For an analysis of the size of the resulting automaton as well as for algorithmic improvements, we also transfer the methods of Champarnaud and Ziadi...

Construction of uninorms on bounded lattices

Gül Deniz Çaylı, Funda Karaçal (2017)

Kybernetika

In this paper, we propose the general methods, yielding uninorms on the bounded lattice ( L , , 0 , 1 ) , with some additional constraints on e L { 0 , 1 } for a fixed neutral element e L { 0 , 1 } based on underlying an arbitrary triangular norm T e on [ 0 , e ] and an arbitrary triangular conorm S e on [ e , 1 ] . And, some illustrative examples are added for clarity.

Constructions of thin-tall Boolean spaces.

Juan Carlos Martínez (2003)

Revista Matemática Complutense

This is an expository paper about constructions of locally compact, Hausdorff, scattered spaces whose Cantor-Bendixson height has cardinality greater than their Cantor-Bendixson width.

Currently displaying 1121 – 1140 of 5971