The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying 141 – 160 of 407

Showing per page

Coherent adequate sets and forcing square

John Krueger (2014)

Fundamenta Mathematicae

We introduce the idea of a coherent adequate set of models, which can be used as side conditions in forcing. As an application we define a forcing poset which adds a square sequence on ω₂ using finite conditions.

Coherent randomness tests and computing the K -trivial sets

Laurent Bienvenu, Noam Greenberg, Antonín Kučera, André Nies, Dan Turetsky (2016)

Journal of the European Mathematical Society

We introduce Oberwolfach randomness, a notion within Demuth’s framework of statistical tests with moving components; here the components’ movement has to be coherent across levels. We show that a ML-random set computes all K -trivial sets if and only if it is not Oberwolfach random, and indeed that there is a K -trivial set which is not computable from any Oberwolfach random set. We show that Oberwolfach random sets satisfy effective versions of almost-everywhere theorems of analysis, such as the...

Colimit-dense subcategories

Jiří Adámek, Andrew D. Brooke-Taylor, Tim Campion, Leonid Positselski, Jiří Rosický (2019)

Commentationes Mathematicae Universitatis Carolinae

Among cocomplete categories, the locally presentable ones can be defined as those with a strong generator consisting of presentable objects. Assuming Vopěnka’s Principle, we prove that a cocomplete category is locally presentable if and only if it has a colimit dense subcategory and a generator consisting of presentable objects. We further show that a 3 -element set is colimit-dense in 𝐒𝐞𝐭 op , and spaces of countable dimension are colimit-dense in 𝐕𝐞𝐜 op .

Coloring grids

Ramiro de la Vega (2015)

Fundamenta Mathematicae

A structure = ( A ; E i ) i n where each E i is an equivalence relation on A is called an n-grid if any two equivalence classes coming from distinct E i ’s intersect in a finite set. A function χ: A → n is an acceptable coloring if for all i ∈ n, the χ - 1 ( i ) intersects each E i -equivalence class in a finite set. If B is a set, then the n-cube Bⁿ may be seen as an n-grid, where the equivalence classes of E i are the lines parallel to the ith coordinate axis. We use elementary submodels of the universe to characterize those n-grids...

Coloring ordinals by reals

Jörg Brendle, Sakaé Fuchino (2007)

Fundamenta Mathematicae

We study combinatorial principles we call the Homogeneity Principle HP(κ) and the Injectivity Principle IP(κ,λ) for regular κ > ℵ₁ and λ ≤ κ which are formulated in terms of coloring the ordinals < κ by reals. These principles are strengthenings of C s ( κ ) and F s ( κ ) of I. Juhász, L. Soukup and Z. Szentmiklóssy. Generalizing their results, we show e.g. that IP(ℵ₂,ℵ₁) (hence also IP(ℵ₂,ℵ₂) as well as HP(ℵ₂)) holds in a generic extension of a model of CH by Cohen forcing, and IP(ℵ₂,ℵ₂) (hence also HP(ℵ₂))...

Coloring triangles and rectangles

Jindřich Zapletal (2023)

Commentationes Mathematicae Universitatis Carolinae

It is consistent that ZF + DC holds, the hypergraph of rectangles on a given Euclidean space has countable chromatic number, while the hypergraph of equilateral triangles on 2 does not.

Combinatorics and quantifiers

Jaroslav Nešetřil (1996)

Commentationes Mathematicae Universitatis Carolinae

Let I m be the set of subsets of I of cardinality m . Let f be a coloring of I m and g a coloring of I m . We write f g if every f -homogeneous H I is also g -homogeneous. The least m such that f g for some f : I m k is called the k -width of g and denoted by w k ( g ) . In the first part of the paper we prove the existence of colorings with high k -width. In particular, we show that for each k > 0 and m > 0 there is a coloring g with w k ( g ) = m . In the second part of the paper we give applications of wide colorings in the theory of generalized quantifiers....

Combinatorics of dense subsets of the rationals

B. Balcar, F. Hernández-Hernández, M. Hrušák (2004)

Fundamenta Mathematicae

We study combinatorial properties of the partial order (Dense(ℚ),⊆). To do that we introduce cardinal invariants , , , , , describing properties of Dense(ℚ). These invariants satisfy ≤ ℚ ≤ ℚ ≤ ℚ ≤ ℚ ≤ ℚ . W e c o m p a r e t h e m w i t h t h e i r a n a l o g u e s i n t h e w e l l s t u d i e d B o o l e a n a l g e b r a ( ω ) / f i n . W e s h o w t h a t ℚ = p , ℚ = t a n d ℚ = i , w h e r e a s ℚ > h a n d ℚ > r a r e b o t h s h o w n t o b e r e l a t i v e l y c o n s i s t e n t w i t h Z F C . W e a l s o i n v e s t i g a t e c o m b i n a t o r i c s o f t h e i d e a l n w d o f n o w h e r e d e n s e s u b s e t s o f , . I n p a r t i c u l a r , w e s h o w t h a t non(M)=min||: ⊆ Dense(R) ∧ (∀I ∈ nwd(R))(∃D ∈ )(I ∩ D = ∅) and cof(M) = min||: ⊆ Dense(ℚ) ∧ (∀I ∈ nwd)(∃D ∈ )(I ∩ = ∅). We use these facts to show that cof(M) ≤ i, which improves a result of S. Shelah.

Combinatorics of ideals --- selectivity versus density

A. Kwela, P. Zakrzewski (2017)

Commentationes Mathematicae Universitatis Carolinae

This note is devoted to combinatorial properties of ideals on the set of natural numbers. By a result of Mathias, two such properties, selectivity and density, in the case of definable ideals, exclude each other. The purpose of this note is to measure the ``distance'' between them with the help of ultrafilter topologies of Louveau.

Combinatorics of open covers (III): games, Cp (X)

Marion Scheepers (1997)

Fundamenta Mathematicae

Some of the covering properties of spaces as defined in Parts I and II are here characterized by games. These results, applied to function spaces C p ( X ) of countable tightness, give new characterizations of countable fan tightness and countable strong fan tightness. In particular, each of these properties is characterized by a Ramseyan theorem.

Combinatorics of open covers (VII): Groupability

Ljubiša D. R. Kočinac, Marion Scheepers (2003)

Fundamenta Mathematicae

We use Ramseyan partition relations to characterize: ∙ the classical covering property of Hurewicz; ∙ the covering property of Gerlits and Nagy; ∙ the combinatorial cardinal numbers and add(ℳ ). Let X be a T 31 / 2 -space. In [9] we showed that C p ( X ) has countable strong fan tightness as well as the Reznichenko property if, and only if, all finite powers of X have the Gerlits-Nagy covering property. Now we show that the following are equivalent: 1. C p ( X ) has countable fan tightness and the Reznichenko property. 2....

Currently displaying 141 – 160 of 407