The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
We degenerate Cox–Nagata rings to toric algebras by means of sagbi bases induced by configurations over the rational function field. For del Pezzo surfaces, this degeneration implies the
Batyrev–Popov conjecture that these rings are presented by ideals of quadrics. For the blow-up of projective -space at points, sagbi bases of Cox–Nagata rings establish a link between the
Verlinde formula and phylogenetic algebraic geometry, and we use this to answer questions due to D’Cruz–Iarrobino and Buczyńska–Wiśniewski....
A true Tree Calculus is being developed to make a joint study of the two statistics “eoc” (end of minimal chain) and “pom” (parent of maximum leaf) on the set of secant trees. Their joint distribution restricted to the set {eoc-pom ≤ 1} is shown to satisfy two partial difference equation systems, to be symmetric and to be expressed in the form of an explicit three-variable generating function.
This paper deals with the properties of self-avoiding walks defined on the lattice with the 8-neighbourhood system. We compute the number of walks, bridges and mean-square displacement for N=1 through 13 (N is the number of steps of the self-avoiding walk). We also estimate the connective constant and critical exponents, and study finite memory and generating functions. We show applications of this kind of walk. In addition, we compute upper bounds for the number of walks and the connective constant....
Currently displaying 1 –
20 of
62