The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying 21 – 40 of 147

Showing per page

Partitions of k -branching trees and the reaping number of Boolean algebras

Claude Laflamme (1993)

Commentationes Mathematicae Universitatis Carolinae

The reaping number 𝔯 m , n ( 𝔹 ) of a Boolean algebra 𝔹 is defined as the minimum size of a subset 𝒜 𝔹 { 𝐎 } such that for each m -partition 𝒫 of unity, some member of 𝒜 meets less than n elements of 𝒫 . We show that for each 𝔹 , 𝔯 m , n ( 𝔹 ) = 𝔯 m n - 1 , 2 ( 𝔹 ) as conjectured by Dow, Steprāns and Watson. The proof relies on a partition theorem for finite trees; namely that every k -branching tree whose maximal nodes are coloured with colours contains an m -branching subtree using at most n colours if and only if n < k m - 1 .

Perfect compactifications of frames

Dharmanand Baboolal (2011)

Czechoslovak Mathematical Journal

Perfect compactifications of frames are introduced. It is shown that the Stone-Čech compactification is an example of such a compactification. We also introduce rim-compact frames and for such frames we define its Freudenthal compactification, another example of a perfect compactification. The remainder of a rim-compact frame in its Freudenthal compactification is shown to be zero-dimensional. It is shown that with the assumption of the Boolean Ultrafilter Theorem the Freudenthal compactification...

Currently displaying 21 – 40 of 147