On a problem of M. F. JANOWITZ
Once the concept of De Morgan algebra of fuzzy sets on a universe X can be defined, we give a necessary and sufficient condition for a De Morgan algebra to be isomorphic to (represented by) a De Morgan algebra of fuzzy sets.
This paper is devoted to the study of a class of left-continuous uninorms locally internal in the region and the residual implications derived from them. It is shown that such uninorm can be represented as an ordinal sum of semigroups in the sense of Clifford. Moreover, the explicit expressions for the residual implication derived from this special class of uninorms are given. A set of axioms is presented that characterizes those binary functions for which a uninorm of this special class exists...
Freytes proved a theorem of Cantor-Bernstein type for algbras; he applied certain sequences of central elements of bounded lattices. The aim of the present paper is to extend the mentioned result to the case when the lattices under consideration need not be bounded; instead of sequences of central elements we deal with sequences of internal direct factors of lattices.
Let be an Archimedean Riesz space and its Boolean algebra of all band projections, and put and , . is said to have Weak Freudenthal Property () provided that for every the lattice is order dense in the principal band . This notion is compared with strong and weak forms of Freudenthal spectral theorem in Archimedean Riesz spaces, studied by Veksler and Lavrič, respectively. is equivalent to -denseness of in for every , and every Riesz space with sufficiently many projections...
By dealing with absolute retracts of l-groups we use a definition analogous to that applied by Halmos for the case of Boolean algebras. The main results of the present paper concern absolute convex retracts in the class of all archimedean l-groups and in the class of all complete l-groups.