The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
In this paper we investigate the relations between torsion classes of Specker lattice ordered groups and torsion classes of generalized Boolean algebras.
Let G be a group acting on Ω and ℱ a G-invariant algebra of subsets of Ω. A full conditional probability on ℱ is a function P: ℱ × (ℱ∖{∅}) → [0,1] satisfying the obvious axioms (with only finite additivity). It is weakly G-invariant provided that P(gA|gB) = P(A|B) for all g ∈ G and A,B ∈ ℱ, and strongly G-invariant provided that P(gA|B) = P(A|B) whenever g ∈ G and A ∪ gA ⊆ B. Armstrong (1989) claimed that weak and strong invariance are equivalent, but we shall show that this is false and that weak...
Currently displaying 21 –
28 of
28