The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Previous Page 4

Displaying 61 – 72 of 72

Showing per page

Retracts and Q-independence

Anna Chwastyk (2007)

Discussiones Mathematicae - General Algebra and Applications

A non-empty set X of a carrier A of an algebra A is called Q-independent if the equality of two term functions f and g of the algebra A on any finite system of elements a₁,a₂,...,aₙ of X implies f(p(a₁),p(a₂),...,p(aₙ)) = g(p(a₁),p(a₂),...,p(aₙ)) for any mapping p ∈ Q. An algebra B is a retract of A if B is the image of a retraction (i.e. of an idempotent endomorphism of B). We investigate Q-independent subsets of algebras which have a retraction in their set of term functions.

Ring-like operations is pseudocomplemented semilattices

Ivan Chajda, Helmut Länger (2000)

Discussiones Mathematicae - General Algebra and Applications

Ring-like operations are introduced in pseudocomplemented semilattices in such a way that in the case of Boolean pseudocomplemented semilattices one obtains the corresponding Boolean ring operations. Properties of these ring-like operations are derived and a characterization of Boolean pseudocomplemented semilattices in terms of these operations is given. Finally, ideals in the ring-like structures are defined and characterized.

Currently displaying 61 – 72 of 72

Previous Page 4