The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Page 1

Displaying 1 – 4 of 4

Showing per page

Calculating a determinant associated with multiplicative functions

P. Codecá, M. Nair (2002)

Bollettino dell'Unione Matematica Italiana

Let h be a complex valued multiplicative function. For any N N , we compute the value of the determinant D N := det i | N , j | N h i , j i j where i , j denotes the greatest common divisor of i and j , which appear in increasing order in rows and columns. Precisely we prove that D N = p l N 1 p l l + 1 i = 1 l h p i - h p i - 1 τ N / p l . This means that D N 1 / τ N is a multiplicative function of N . The algebraic apparatus associated with this result allows us to prove the following two results. The first one is the characterization of real multiplicative functions f n , with 0 f p < 1 , as minimal values of certain...

Currently displaying 1 – 4 of 4

Page 1