The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
We describe the fields of rational constants of generic four-variable Lotka-Volterra derivations. Thus, we determine all rational first integrals of the corresponding systems of differential equations. Such systems play a role in population biology, laser physics and plasma physics. They are also an important part of derivation theory, since they are factorizable derivations. Moreover, we determine the fields of rational constants of a class of monomial derivations.
Let (F,D) be a differential field with the subfield of constants C (c ∈ C iff Dc=0). We consider linear differential equations (1) , where , and the solution y is in F or in some extension E of F (E ⊇ F). There always exists a (minimal, unique) extension E of F, where Ly=0 has a full system of linearly independent (over C) solutions; it is called the Picard-Vessiot extension of F E = PV(F,Ly=0). The Galois group G(E|F) of an extension field E ⊇ F consists of all differential automorphisms of...
Dans cet article, nous montrons que la notion analytique d’exposants développée par Levelt pour les systèmes différentiels linéaires en une singularité régulière s’interprète algébriquement en termes d’invariants de réseaux, relatifs à un réseau stable maximal que nous appelons « réseau de Levelt ». Nous obtenons en particulier un encadrement pour la somme des exposants des systèmes n’ayant que des singularités régulières sur ).
The intrinsic differential Galois group is a twisted form of the standard differential Galois group, defined over the base differential field. We exhibit several constraints for the inverse problem of differential Galois theory to have a solution in this intrinsic setting, and show by explicit computations that they are sufficient in a (very) special situation.
Lotka-Volterra systems appear in population biology, plasma physics, laser physics and derivation theory, among many others. We determine the rings of constants of four-variable Lotka-Volterra derivations with four parameters C 1, C 2, C 3, C 4 ∈ k, where k is a field of characteristic zero. Thus, we give a full description of polynomial first integrals of the respective systems of differential equations.
We show that the rings of constants of generic four-variable Lotka-Volterra derivations are finitely generated polynomial rings. We explicitly determine these rings, and we give a description of all polynomial first integrals of their corresponding systems of differential equations. Besides, we characterize cofactors of Darboux polynomials of arbitrary four-variable Lotka-Volterra systems. These cofactors are linear forms with coefficients in the set of nonnegative integers. Lotka-Volterra systems...
Currently displaying 1 –
8 of
8