The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
We obtain an algebraic interpretation by means of the Picard-Vessiot theory of a result by Ziglin about the self-intersection of complex separatrices of time-periodically perturbed one-degree of freedom complex analytical Hamiltonian systems.
Let A be a commutative algebra without zero divisors over a field k. If A is finitely generated over k, then there exist well known characterizations of all k-subalgebras of A which are rings of constants with respect to k-derivations of A. We show that these characterizations are not valid in the case when the algebra A is not finitely generated over k.
If is a smooth scheme over a perfect field of characteristic , and if is the sheaf of differential operators on [7], it is well known that giving an action of on an -module is equivalent to giving an infinite sequence of -modules descending via the iterates of the Frobenius endomorphism of [5]. We show that this result can be generalized to any infinitesimal deformation of a smooth morphism in characteristic , endowed with Frobenius liftings. We also show that it extends to adic...
A closed loop parametrical identification procedure for continuous-time constant linear systems is introduced. This approach which exhibits good robustness properties with respect to a large variety of additive perturbations is based on the following mathematical tools: (1) module theory; (2) differential algebra; (3) operational calculus. Several concrete case-studies with computer simulations demonstrate the efficiency of our on-line identification scheme.
A closed loop parametrical identification procedure for
continuous-time constant linear systems is introduced. This
approach which exhibits good robustness properties with respect to
a large variety of additive perturbations is based on the
following mathematical tools:
(1) module theory;
(2) differential algebra;
(3) operational calculus.
Several concrete case-studies with computer simulations
demonstrate the efficiency of our on-line identification scheme.
Using the techniques developed by Jean Ecalle for the study of nonlinear differential equations, we prove that the -difference equationwith () and is analytically conjugated to one of the following equations :
Un algorithme est présenté pour calculer en toute généralité le « réseau de Levelt » pour un réseau donné.
We generalize and unify the proofs of several results on algebraic independence of arithmetic functions and Dirichlet series by using a theorem of Ax on the differential Schanuel conjecture. Along the way, we find counter-examples to some results in the literature.
Currently displaying 1 –
17 of
17