The search session has expired. Please query the service again.
The most fundamental complexes of free modules over a commutative ring are the Koszul complex, which is constructed from a vector (i.e., a 1-tensor), and the Eagon-Northcott and Buchsbaum-Rim complexes, which are constructed from a matrix (i.e., a 2-tensor). The subject of this paper is a multilinear analogue of these complexes, which we construct from an arbitrary higher tensor. Our construction provides detailed new examples of minimal free resolutions, as well as a unifying view on a wide variety...
Let be a polynomial ring in variables and let be a strictly increasing sequence of integers. Boij and Söderberg conjectured the existence of graded -modules of finite length having pure free resolution of type in the sense that for the -th syzygy module of has generators only in degree .This paper provides a construction, in characteristic zero, of modules with this property that are also -equivariant. Moreover, the construction works over rings of the form where is a polynomial...
Currently displaying 1 –
11 of
11