The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Displaying 441 –
460 of
471
The paper is devoted to algebraic surfaces which can be obtained using a simple combinatorial procedure called the T-construction. The class of T-surfaces is sufficiently rich: for example, we construct T-surfaces of an arbitrary degree in RP³ which are M-surfaces. We also present a construction of T-surfaces in RP³ with dim H1 (RX; Z/2) > h1, 1(CX), where RX and CX are the real and the complex point sets of the surface.
In answering questions of J. Maříková [Fund. Math. 209 (2010)] we prove a triangulation result that is of independent interest. In more detail, let R be an o-minimal field with a proper convex subring V, and let st: V → k be the corresponding standard part map. Under a mild assumption on (R,V) we show that a definable set X ⊆ Vⁿ admits a triangulation that induces a triangulation of its standard part st X ⊆ kⁿ.
It follows from the known restrictions on the topology of a real algebraic variety that the number of handles of the real part of a real nonsingular sextic in CP3 is at most 47. We construct a real nonsingular sextic X6 in CP3 whose real part RX6 has 44 handles. In particular, this surface verifies b1(RX6) = h1,1(X6) + 2. We extend the construction in order to obtain for any even m ≥ 6 a real nonsingular surface Xm of degree m in CP3 verifying b1(RXm) > h1,1(Xm). It is known that such a surface...
Let C ⊆ Pn be an unramified nonspecial real space curve having many real branches and few ovals. We show that C is a rational normal curve if n is even, and that C is an M-curve having no ovals if n is odd.
On montre que l’ensemble des matrices tridiagonales périodiques symétriques de spectre fixé possède une direction tangente privilégiée, construite à l’aide des vecteurs propres des matrices et de la jacobienne d’une courbe hyperelliptique. Il se trouve que cette direction est celle du célèbre flot de Toda périodique.
We give a recursive formula for purely real Welschinger invariants of the following real Del Pezzo surfaces: the projective plane blown up at real and pairs of conjugate imaginary points, where , and the real quadric blown up at pairs of conjugate imaginary points and having non-empty real part. The formula is similar to Vakil’s recursive formula [22] for Gromov–Witten invariants of these surfaces and generalizes our recursive formula [12] for purely real Welschinger invariants of real toric...
The aim of this paper is to prove that every subset of definable from addition, multiplication and exponentiation admits a stratification satisfying Whitney’s conditions a) and b).
A compact semialgebraic set admits a semialgebraic triangulation such that the family of open simplexes forms a Whitney stratification and is compatible with a finite number of given semialgebraic subsets.
Given an o-minimal expansion ℳ of a real closed field R which is not polynomially bounded. Let denote the definable indefinitely Peano differentiable functions. If we further assume that ℳ admits cell decomposition, each definable closed subset A of Rⁿ is the zero-set of a function f:Rⁿ → R. This implies approximation of definable continuous functions and gluing of functions defined on closed definable sets.
Currently displaying 441 –
460 of
471