The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Displaying 181 –
200 of
255
In this paper, we determine all the normal forms of Hermitian matrices over finite group rings , where , is a commutative -group with order . Furthermore, using the normal forms of Hermitian matrices, we study the structure of unitary group over through investigating its BN-pair and order. As an application, we construct a Cartesian authentication code and compute its size parameters.
Let T = {z1, z2, . . . , zn} be a finite multiset of real numbers, where z1 ≤ z2 ≤ · · · ≤ zn. The purpose of this article is to study the different properties of MIN and MAX matrices of the set T with min(zi , zj) and max(zi , zj) as their ij entries, respectively.We are going to do this by interpreting these matrices as so-called meet and join matrices and by applying some known results for meet and join matrices. Once the theorems are found with the aid of advanced methods, we also consider whether...
Let ℳ be a von Neumann algebra with unit . Let τ be a faithful, normal, semifinite trace on ℳ. Given x ∈ ℳ, denote by the generalized s-numbers of x, defined by
= inf||xe||: e is a projection in ℳ i with ≤ t (t ≥ 0).
We prove that, if D is a complex domain and f:D → ℳ is a holomorphic function, then, for each t ≥ 0, is a subharmonic function on D. This generalizes earlier subharmonicity results of White and Aupetit on the singular values of matrices.
Currently displaying 181 –
200 of
255