Displaying 2501 – 2520 of 3023

Showing per page

The algebra of the subspace semigroup of M ( q )

Jan Okniński (2002)

Colloquium Mathematicae

The semigroup S = S ( M ( q ) ) of subspaces of the algebra M ( q ) of 2 × 2 matrices over a finite field q is studied. The ideal structure of S, the regular -classes of S and the structure of the complex semigroup algebra ℂ[S] are described.

The Bernoullian of a Matrix. (A Generalization of the Bernoulli Numbers)

Esayas George Kundert (1982)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

Si associano ad una matrice infinita di un certo tipo altre due matrici dello stesso tipo, dette rispettivamente bernoulliana e antibernoulliana di A. Si studiano alcune proprietà di queste matrici. Si ottiene in tal via una generalizzazione dei classici numeri di Bernoulli.

The Brauer category and invariant theory

Gustav I. Lehrer, R. B. Zhang (2015)

Journal of the European Mathematical Society

A category of Brauer diagrams, analogous to Turaev’s tangle category, is introduced, a presentation of the category is given, and full tensor functors are constructed from this category to the category of tensor representations of the orthogonal group O ( V ) or the symplectic group Sp ( V ) over any field of characteristic zero. The first and second fundamental theorems of invariant theory for these classical groups are generalised to the category theoretic setting. The major outcome is that we obtain presentations...

The Bruhat rank of a binary symmetric staircase pattern

Zhibin Du, Carlos M. da Fonseca (2016)

Open Mathematics

In this work we show that the Bruhat rank of a symmetric (0,1)-matrix of order n with a staircase pattern, total support, and containing In, is at most 2. Several other related questions are also discussed. Some illustrative examples are presented.

The classification of edges and the change in multiplicity of an eigenvalue of a real symmetric matrix resulting from the change in an edge value

Kenji Toyonaga, Charles R. Johnson (2017)

Special Matrices

We take as given a real symmetric matrix A, whose graph is a tree T, and the eigenvalues of A, with their multiplicities. Each edge of T may then be classified in one of four categories, based upon the change in multiplicity of a particular eigenvalue, when the edge is removed (i.e. the corresponding entry of A is replaced by 0).We show a necessary and suficient condition for each possible classification of an edge. A special relationship is observed among 2-Parter edges, Parter edges and singly...

The Collatz-Wielandt quotient for pairs of nonnegative operators

Shmuel Friedland (2020)

Applications of Mathematics

In this paper we consider two versions of the Collatz-Wielandt quotient for a pair of nonnegative operators A , B that map a given pointed generating cone in the first space into a given pointed generating cone in the second space. If the two spaces and two cones are identical, and B is the identity operator, then one version of this quotient is the spectral radius of A . In some applications, as commodity pricing, power control in wireless networks and quantum information theory, one needs to deal with...

Currently displaying 2501 – 2520 of 3023