Displaying 41 – 60 of 456

Showing per page

A cryptography using lifting scheme integer wavelet transform over min-max-plus algebra

Mahmud Yunus, Mohamad Ilham Dwi Firmansyah, Kistosil Fahim Subiono (2024)

Kybernetika

We propose a cryptographic algorithm utilizing integer wavelet transform via a lifting scheme. In this research, we construct some predict and update operators within the lifting scheme of wavelet transforms employing operations in min-max-plus algebra, termed as lifting scheme integer wavelet transform over min-max-plus algebra (MMPLS-IWavelet). The analysis and synthesis process on MMPLS-IWavelet is implemented for both encryption and decryption processes. The encryption key comprises a sequence...

A Deformed Quon Algebra

Hery Randriamaro (2019)

Communications in Mathematics

The quon algebra is an approach to particle statistics in order to provide a theory in which the Pauli exclusion principle and Bose statistics are violated by a small amount. The quons are particles whose annihilation and creation operators obey the quon algebra which interpolates between fermions and bosons. In this paper we generalize these models by introducing a deformation of the quon algebra generated by a collection of operators a i , k , ( i , k ) * × [ m ] , on an infinite dimensional vector space satisfying the...

A determinant formula from random walks

Hery Randriamaro (2023)

Archivum Mathematicum

One usually studies the random walk model of a cat moving from one room to another in an apartment. Imagine now that the cat also has the possibility to go from one apartment to another by crossing some corridors, or even from one building to another. That yields a new probabilistic model for which each corridor connects the entrance rooms of several apartments. This article computes the determinant of the stochastic matrix associated to such random walks. That new model naturally allows to compute...

A Fiedler-like theory for the perturbed Laplacian

Israel Rocha, Vilmar Trevisan (2016)

Czechoslovak Mathematical Journal

The perturbed Laplacian matrix of a graph G is defined as L D = D - A , where D is any diagonal matrix and A is a weighted adjacency matrix of G . We develop a Fiedler-like theory for this matrix, leading to results that are of the same type as those obtained with the algebraic connectivity of a graph. We show a monotonicity theorem for the harmonic eigenfunction corresponding to the second smallest eigenvalue of the perturbed Laplacian matrix over the points of articulation of a graph. Furthermore, we use...

A formula for all minors of the adjacency matrix and an application

R. B. Bapat, A. K. Lal, S. Pati (2014)

Special Matrices

We supply a combinatorial description of any minor of the adjacency matrix of a graph. This description is then used to give a formula for the determinant and inverse of the adjacency matrix, A(G), of a graph G, whenever A(G) is invertible, where G is formed by replacing the edges of a tree by path bundles.

Currently displaying 41 – 60 of 456