Déterminants de Hankel et quotients de séries formelles
On présente ici une approche directe et géométrique pour le calcul des déterminants d’opérateurs de type Schrödinger sur un graphe fini. Du calcul de l’intégrale de Fresnel associée, on déduit le déterminant. Le calcul des intégrales de Fresnel est grandement facilité par l’utilisation simultanée du théorème de Fubini et d’une version linéaire du calcul symbolique des opérateurs intégraux de Fourier. On obtient de façon directe une formule générale exprimant le déterminant en terme des conditions...
An n by n skew-symmetric type (-1; 1)-matrix K =[ki;j ] has 1’s on the main diagonal and ±1’s elsewhere with ki;j =-kj;i . The largest possible determinant of such a matrix K is an interesting problem. The literature is extensive for n ≡ 0 mod 4 (skew-Hadamard matrices), but for n ≡ 2 mod 4 there are few results known for this question. In this paper we approach this problem constructing cocyclic matrices over the dihedral group of 2t elements, for t odd, which are equivalent to (-1; 1)-matrices...
Let be a finite subset of a partially ordered set . Let be an incidence function of . Let denote the matrix having evaluated at the meet of and as its -entry and denote the matrix having evaluated at the join of and as its -entry. The set is said to be meet-closed if for all . In this paper we get explicit combinatorial formulas for the determinants of matrices and on any meet-closed set . We also obtain necessary and sufficient conditions for the matrices...
The aim of this paper is to study determinants of matrices related to the Pascal triangle.
In this paper, we introduce related comparability for exchange ideals. Let be an exchange ideal of a ring . If satisfies related comparability, then for any regular matrix , there exist left invertible and right invertible such that for idempotents .