On a generalization of the Narayana triangle.
Let A be an n×n irreducible nonnegative (elementwise) matrix. Borobia and Moro raised the following question: Suppose that every diagonal of A contains a positive entry. Is A similar to a positive matrix? We give an affirmative answer in the case n = 4.
In this paper, we prove a result linking the square and the rectangular R-transforms, the consequence of which is a surprising relation between the square and rectangular versions the free additive convolutions, involving the Marchenko–Pastur law. Consequences on random matrices, on infinite divisibility and on the arithmetics of the square versions of the free additive and multiplicative convolutions are given.