Displaying 161 – 180 of 229

Showing per page

The symmetric tensor product of a direct sum of locally convex spaces

José Ansemil, Klaus Floret (1998)

Studia Mathematica

An explicit representation of the n-fold symmetric tensor product (equipped with a natural topology τ such as the projective, injective or inductive one) of the finite direct sum of locally convex spaces is presented. The formula for τ , s n ( F 1 F 2 ) gives a direct proof of a recent result of Díaz and Dineen (and generalizes it to other topologies τ) that the n-fold projective symmetric and the n-fold projective “full” tensor product of a locally convex space E are isomorphic if E is isomorphic to its square E 2 .

The theory and applications of complex matrix scalings

Rajesh Pereira, Joanna Boneng (2014)

Special Matrices

We generalize the theory of positive diagonal scalings of real positive definite matrices to complex diagonal scalings of complex positive definite matrices. A matrix A is a diagonal scaling of a positive definite matrix M if there exists an invertible complex diagonal matrix D such that A = D*MD and where every row and every column of A sums to one. We look at some of the key properties of complex diagonal scalings and we conjecture that every n by n positive definite matrix has at most 2n−1 scalings...

Currently displaying 161 – 180 of 229