Displaying 181 – 200 of 229

Showing per page

The vector cross product from an algebraic point of view

Götz Trenkler (2001)

Discussiones Mathematicae - General Algebra and Applications

The usual vector cross product of the three-dimensional Euclidian space is considered from an algebraic point of view. It is shown that many proofs, known from analytical geometry, can be distinctly simplified by using the matrix oriented approach. Moreover, by using the concept of generalized matrix inverse, we are able to facilitate the analysis of equations involving vector cross products.

The Well-Covered Dimension Of Products Of Graphs

Isaac Birnbaum, Megan Kuneli, Robyn McDonald, Katherine Urabe, Oscar Vega (2014)

Discussiones Mathematicae Graph Theory

We discuss how to find the well-covered dimension of a graph that is the Cartesian product of paths, cycles, complete graphs, and other simple graphs. Also, a bound for the well-covered dimension of Kn × G is found, provided that G has a largest greedy independent decomposition of length c < n. Formulae to find the well-covered dimension of graphs obtained by vertex blowups on a known graph, and to the lexicographic product of two known graphs are also given.

The Wigner semi-circle law and the Heisenberg group

Jacques Faraut, Linda Saal (2007)

Banach Center Publications

The Wigner Theorem states that the statistical distribution of the eigenvalues of a random Hermitian matrix converges to the semi-circular law as the dimension goes to infinity. It is possible to establish this result by using harmonic analysis on the Heisenberg group. In fact this convergence corresponds to the topology of the set of spherical functions associated to the action of the unitary group on the Heisenberg group.

Theorems of the alternative for cones and Lyapunov regularity of matrices

Bryan Cain, Daniel Hershkowitz, Hans Schneider (1997)

Czechoslovak Mathematical Journal

Standard facts about separating linear functionals will be used to determine how two cones C and D and their duals C * and D * may overlap. When T V W is linear and K V and D W are cones, these results will be applied to C = T ( K ) and D , giving a unified treatment of several theorems of the alternate which explain when C contains an interior point of D . The case when V = W is the space H of n × n Hermitian matrices, D is the n × n positive semidefinite matrices, and T ( X ) = A X + X * A yields new and known results about the existence of block diagonal...

There is no analog of the transpose map for infinite matrices.

Juan Jacobo Simón (1997)

Publicacions Matemàtiques

In this note we show that there are no ring anti-isomorphism between row finite matrix rings. As a consequence we show that row finite and column finite matrix rings cannot be either isomorphic or Morita equivalent rings. We also show that antiisomorphisms between endomorphism rings of infinitely generated projective modules may exist.

Tilings associated with non-Pisot matrices

Maki Furukado, Shunji Ito, E. Arthur Robinson (2006)

Annales de l’institut Fourier

Suppose A G l d ( ) has a 2-dimensional expanding subspace E u , satisfies a regularity condition, called “good star”, and has A * 0 , where A * is an oriented compound of A . A morphism θ of the free group on { 1 , 2 , , d } is called a non-abelianization of A if it has structure matrix A . We show that there is a tiling substitution Θ whose “boundary substitution” θ = Θ is a non-abelianization of A . Such a tiling substitution Θ leads to a self-affine tiling of E u 2 with A u : = A | E u G L 2 ( ) as its expansion. In the last section we find conditions on A so...

Currently displaying 181 – 200 of 229