Displaying 1881 – 1900 of 3007

Showing per page

On the orbit of the centralizer of a matrix

Ching-I Hsin (2002)

Colloquium Mathematicae

Let A be a complex n × n matrix. Let A' be its commutant in Mₙ(ℂ), and C(A) be its centralizer in GL(n,ℂ). Consider the standard C(A)-action on ℂⁿ. We describe the C(A)-orbits via invariant subspaces of A'. For example, we count the number of C(A)-orbits as well as that of invariant subspaces of A'.

On the reduction of a random basis

Ali Akhavi, Jean-François Marckert, Alain Rouault (2009)

ESAIM: Probability and Statistics

For p ≤ n, let b1(n),...,bp(n) be independent random vectors in n with the same distribution invariant by rotation and without mass at the origin. Almost surely these vectors form a basis for the Euclidean lattice they generate. The topic of this paper is the property of reduction of this random basis in the sense of Lenstra-Lenstra-Lovász (LLL). If b ^ 1 ( n ) , ... , b ^ p ( n ) is the basis obtained from b1(n),...,bp(n) by Gram-Schmidt orthogonalization, the quality of the reduction depends upon the sequence of ratios...

On the Relationships between Zero Forcing Numbers and Certain Graph Coverings

Fatemeh Alinaghipour Taklimi, Shaun Fallat, Karen Meagher (2014)

Special Matrices

The zero forcing number and the positive zero forcing number of a graph are two graph parameters that arise from two types of graph colourings. The zero forcing number is an upper bound on the minimum number of induced paths in the graph that cover all the vertices of the graph, while the positive zero forcing number is an upper bound on the minimum number of induced trees in the graph needed to cover all the vertices in the graph. We show that for a block-cycle graph the zero forcing number equals...

Currently displaying 1881 – 1900 of 3007