The search session has expired. Please query the service again.
In the present paper, we will show that the set of minimal elements of a full affine semigroup contains a free basis of the group generated by in . This will be applied to the study of the group for a semilocal ring .
We first prove that every countably presented module is a pure epimorphic image of a countably generated pure-projective module, and by using this we prove that if every countably generated pure-projective module is pure-injective then every module is pure-injective, while if in any countably generated pure-projective module every countably generated pure-projective pure submodule is a direct summand then every module is pure-projective.
Currently displaying 1 –
2 of
2