The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Displaying 1541 –
1560 of
3021
We prove a number of results involving categories enriched over CMet, the category of complete metric spaces with possibly infinite distances. The category CPMet of path complete metric spaces is locally -presentable, closed monoidal, and coreflective in CMet. We also prove that the category CCMet of convex complete metric spaces is not closed monoidal and characterize the isometry--generated objects in CMet, CPMet and CCMet, answering questions by Di Liberti and Rosický. Other results include...
In many situations, minimal models are used as representatives of homotopy types. In this paper we state this fact as an equivalence of categories. This equivalence follows from an axiomatic definition of minimal objects. We see that this definition includes examples such as minimal resolutions of Eilenberg-Nakayama-Tate, minimal fiber spaces of Kan and Λ-minimal Λ-extensions of Halperin. For the first one, this is done by generalizing the construction of minimal resolutions of modules to complexes....
We propose a new framework for the study of continuous time dynamical systems on networks. We view such dynamical systems as collections of interacting control systems. We show that a class of maps between graphs called graph fibrations give rise to maps between dynamical systems on networks. This allows us to produce conjugacy between dynamical systems out of combinatorial data. In particular we show that surjective graph fibrations lead to synchrony subspaces in networks. The injective graph fibrations,...
We introduce the connected sum for modular operads. This gives us a graded commutative associative product, and together with the BV bracket and the BV Laplacian obtained from the operadic composition and self-composition, we construct the full Batalin-Vilkovisky algebra. The BV Laplacian is then used as a perturbation of the special deformation retract of formal functions to construct a minimal model and compute an effective action.
Currently displaying 1541 –
1560 of
3021