Monomorphisms and epimorphisms in abstract categories
is the category of spaces with filters: an object is a pair , a compact Hausdorff space and a filter of dense open subsets of . A morphism is a continuous function for which whenever . This category arises naturally from considerations in ordered algebra, e.g., Boolean algebra, lattice-ordered groups and rings, and from considerations in general topology, e.g., the theory of the absolute and other covers, locales, and frames, though we shall specifically address only one of these...
We survey some recent results on the theory of Morita duality for Grothendieck categories, comparing two different versions of this concept, and giving applications to QF-3 and Qf-3' rings.
Conditions which imply Morita equivalences of functor categories are described. As an application a Dold-Kan type theorem for functors defined on a category associated to associative algebras with one-side units is proved.