The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Page 1

Displaying 1 – 13 of 13

Showing per page

Conditions for p-supersolubility and p-nilpotency of finite soluble groups

Wenai Yan, Baojun Li, Zhirang Zhang (2013)

Colloquium Mathematicae

Let ℨ be a complete set of Sylow subgroups of a group G. A subgroup H of G is called ℨ-permutably embedded in G if every Sylow subgroup of H is also a Sylow subgroup of some ℨ-permutable subgroup of G. By using this concept, we obtain some new criteria of p-supersolubility and p-nilpotency of a finite group.

Cyclic and dihedral constructions of even order

Aleš Drápal (2003)

Commentationes Mathematicae Universitatis Carolinae

Let G ( ) and G ( * ) be two groups of finite order n , and suppose that they share a normal subgroup S such that u v = u * v if u S or v S . Cases when G / S is cyclic or dihedral and when u v u * v for exactly n 2 / 4 pairs ( u , v ) G × G have been shown to be of crucial importance when studying pairs of 2-groups with the latter property. In such cases one can describe two general constructions how to get all possible G ( * ) from a given G = G ( ) . The constructions, denoted by G [ α , h ] and G [ β , γ , h ] , respectively, depend on a coset α (or two cosets β and γ ) modulo S , and on an...

Currently displaying 1 – 13 of 13

Page 1