The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying 81 – 100 of 125

Showing per page

Sottogruppi massimali dei sottogruppi di Sylow e complementi normali

Anna Luisa Gilotti, Luigi Serena (1984)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

In this Note conditions for the existence of a normal p -complement and for the supersolubility of a finite group are given.

Sui gruppi finiti i cui sottogruppi non normali hanno tutti lo stesso ordine

Guido Zappa (2002)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

Sia G un gruppo non abeliano né hamiltoniano, ed n un intero 2 . Si dice che G appartiene a S n se tutti i sottogruppi non normali di G hanno ordine n . Sia p un numero primo. In questa Nota vengono determinati: 1) tutti i p -gruppi in S p (Teoremi 1 e 2); 2) tutti i p -gruppi in S p i per i 2 e p 3 (Teorema 3); 3) tutti i gruppi di esponente 4 appartenenti ad S 4 (Teorema 4).

Sui gruppi finiti non abeliani a sottogruppi normali propri abeliani

Juan Morales (1983)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

In this paper we study finite non abelian solvable groups in which every proper normal subgroup is abelian, and non-solvable ones in which every proper normal subgroup is abelian and has a basis of at most two elements.

Sull’esistenza di sottogruppi nilpotenti autonormalizzanti in alcuni gruppi semplici, II

Alma D'Aniello (1983)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

We prove that in the Mathieu groups there is a unique conjugacy class of nilpotent self-normalizing subgroups, the class of the 2-Sylow subgroups. In the Janko group J 1 there are no nilpotent self-normalizing subgroups.

The Hughes subgroup

Robert Bryce (1994)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

Let G be a group and p a prime. The subgroup generated by the elements of order different from p is called the Hughes subgroup for exponent p . Hughes [3] made the following conjecture: if H p G is non-trivial, its index in G is at most p . There are many articles that treat this problem. In the present Note we examine those of Strauss and Szekeres [9], which treats the case p = 3 and G arbitrary, and that of Hogan and Kappe [2] concerning the case when G is metabelian, and p arbitrary. A common proof is...

The superfocal subgroup

Marian Deaconescu (1984)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

Nel presente lavoro vengono dimostrati teoremi d'esistenza di p -complementi normali nei gruppi finiti.

Currently displaying 81 – 100 of 125