The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying 21 – 40 of 74

Showing per page

Groupes totaux

Bruno Deschamps, Ivan Suarez Atias (2013)

Annales mathématiques Blaise Pascal

Les « groupes totaux » sont les groupes pour lesquels la dimension du centre l’algèbre des invariants d’une algèbre simple centrale 𝔄 f associée à un 2 -cocycle f Z 2 ( Gal ( L / k ) , L * ) sous l’action d’un relevé de l’action galoisienne à 𝔄 f est constante quels que soient k et f . Dans cet article, nous montrons que les groupes quasi-CC (qui sont les groupes de centre cyclique et dont les centralisateurs des éléments hors du centre sont cycliques) sont totaux. Les groupes de type CC qui sont les groupes quasi-CC à centre trivial...

Nil series from arbitrary functions in group theory

Ian Hawthorn (2018)

Commentationes Mathematicae Universitatis Carolinae

In an earlier paper distributors were defined as a measure of how close an arbitrary function between groups is to being a homomorphism. Distributors generalize commutators, hence we can use them to try to generalize anything defined in terms of commutators. In this paper we use this to define a generalization of nilpotent groups and explore its basic properties.

On a group-theoretical generalization of the Gauss formula

Georgiana Fasolă, Marius Tărnăuceanu (2023)

Czechoslovak Mathematical Journal

We discuss a group-theoretical generalization of the well-known Gauss formula involving the function that counts the number of automorphisms of a finite group. This gives several characterizations of finite cyclic groups.

Currently displaying 21 – 40 of 74