The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Les « groupes totaux » sont les groupes pour lesquels la dimension du centre l’algèbre des invariants d’une algèbre simple centrale associée à un -cocycle sous l’action d’un relevé de l’action galoisienne à est constante quels que soient et . Dans cet article, nous montrons que les groupes quasi-CC (qui sont les groupes de centre cyclique et dont les centralisateurs des éléments hors du centre sont cycliques) sont totaux. Les groupes de type CC qui sont les groupes quasi-CC à centre trivial...
In an earlier paper distributors were defined as a measure of how close an arbitrary function between groups is to being a homomorphism. Distributors generalize commutators, hence we can use them to try to generalize anything defined in terms of commutators. In this paper we use this to define a generalization of nilpotent groups and explore its basic properties.
We discuss a group-theoretical generalization of the well-known Gauss formula involving the function that counts the number of automorphisms of a finite group. This gives several characterizations of finite cyclic groups.
Currently displaying 21 –
40 of
74