Displaying 181 – 200 of 203

Showing per page

Convolution Products in L1(R+), Integral Transforms and Fractional Calculus

Miana, Pedro (2005)

Fractional Calculus and Applied Analysis

Mathematics Subject Classification: 43A20, 26A33 (main), 44A10, 44A15We prove equalities in the Banach algebra L1(R+). We apply them to integral transforms and fractional calculus.* Partially supported by Project BFM2001-1793 of the MCYT-DGI and FEDER and Project E-12/25 of D.G.A.

Coppersmith-Rivlin type inequalities and the order of vanishing of polynomials at 1

(2016)

Acta Arithmetica

For n ∈ ℕ, L > 0, and p ≥ 1 let κ p ( n , L ) be the largest possible value of k for which there is a polynomial P ≢ 0 of the form P ( x ) = j = 0 n a j x j , | a 0 | L ( j = 1 n | a j | p ) 1 / p , a j , such that ( x - 1 ) k divides P(x). For n ∈ ℕ, L > 0, and q ≥ 1 let μ q ( n , L ) be the smallest value of k for which there is a polynomial Q of degree k with complex coefficients such that | Q ( 0 ) | > 1 / L ( j = 1 n | Q ( j ) | q ) 1 / q . We find the size of κ p ( n , L ) and μ q ( n , L ) for all n ∈ ℕ, L > 0, and 1 ≤ p,q ≤ ∞. The result about μ ( n , L ) is due to Coppersmith and Rivlin, but our proof is completely different and much shorter even in that special...

Corrections to the paper “The boundedness of certain sublinear operator in the weighted variable Lebesgue spaces“

Rovshan A. Bandaliev (2013)

Czechoslovak Mathematical Journal

In this paper the author proved the boundedness of the multidimensional Hardy type operator in weighted Lebesgue spaces with variable exponent. As an application he proved the boundedness of certain sublinear operators on the weighted variable Lebesgue space. The proof of the boundedness of the multidimensional Hardy type operator in weighted Lebesgue spaces with a variable exponent does not contain any mistakes. But in the proof of the boundedness of certain sublinear operators on the weighted...

Covering dimension and differential inclusions

Giovanni Anello (2000)

Commentationes Mathematicae Universitatis Carolinae

In this paper we shall establish a result concerning the covering dimension of a set of the type { x X : Φ ( x ) Ψ ( x ) } , where Φ , Ψ are two multifunctions from X into Y and X , Y are real Banach spaces. Moreover, some applications to the differential inclusions will be given.

Covering Property Axiom C P A c u b e and its consequences

Krzysztof Ciesielski, Janusz Pawlikowski (2003)

Fundamenta Mathematicae

We formulate a Covering Property Axiom C P A c u b e , which holds in the iterated perfect set model, and show that it implies easily the following facts. (a) For every S ⊂ ℝ of cardinality continuum there exists a uniformly continuous function g: ℝ → ℝ with g[S] = [0,1]. (b) If S ⊂ ℝ is either perfectly meager or universally null then S has cardinality less than . (c) cof() = ω₁ < , i.e., the cofinality of the measure ideal is ω₁. (d) For every uniformly bounded sequence f n < ω of Borel functions there are sequences:...

Critères de convexité et inégalités intégrales

Serge Dubuc (1977)

Annales de l'institut Fourier

Pour trois fonctions non-négatives intégrables sur R n , f , g et h , telles que ( h ( x + y ) ) - 1 / n ( f ( x ) ) - 1 / n + ( g ( y ) ) - 1 / n , Borelll a établi l’inégalité h ( z ) d z min f ( x ) d x , g ( y ) d y ) . Nous déterminons les conditions précises où l’inégalité sera stricte. La clef de cette analyse est une nouvelle caractérisation des fonctions convexes mesurables.

Criterion of the reality of zeros in a polynomial sequence satisfying a three-term recurrence relation

Innocent Ndikubwayo (2020)

Czechoslovak Mathematical Journal

This paper establishes the necessary and sufficient conditions for the reality of all the zeros in a polynomial sequence { P i } i = 1 generated by a three-term recurrence relation P i ( x ) + Q 1 ( x ) P i - 1 ( x ) + Q 2 ( x ) P i - 2 ( x ) = 0 with the standard initial conditions P 0 ( x ) = 1 , P - 1 ( x ) = 0 , where Q 1 ( x ) and Q 2 ( x ) are arbitrary real polynomials.

Currently displaying 181 – 200 of 203