Transformations of differentiable functions
We prove the uniqueness of weak solutions for the Cauchy problem for a class of transport equations whose velocities are partially with bounded variation. Our result deals with the initial value problem where is the vector fieldwith a boundedness condition on the divergence of each vector field . This model was studied in the paper [LL] with a regularity assumption replacing our hypothesis. This settles partly a question raised in the paper [Am]. We examine the details of the argument of...
We consider a Vlasov-Fokker-Planck equation governing the evolution of the density of interacting and diffusive matter in the space of positions and velocities. We use a probabilistic interpretation to obtain convergence towards equilibrium in Wasserstein distance with an explicit exponential rate. We also prove a propagation of chaos property for an associated particle system, and give rates on the approximation of the solution by the particle system. Finally, a transportation inequality...
This paper presents different approaches, based on functional inequalities, to study the speed of convergence in total variation distance of ergodic diffusion processes with initial law satisfying a given integrability condition. To this end, we give a general upper bound “à la Pinsker” enabling us to study our problem firstly via usual functional inequalities (Poincaré inequality, weak Poincaré,…) and truncation procedure, and secondly through the introduction of new functional inequalities ....
The addition of fuzzy intervals based on a triangular norm T is studied. It is shown that the addition based on a t-norm T weaker than the Lukasiewicz t-norm TL acts on linear fuzzy intervals just as the TL-based addition. Some examples are given.
One-dimensional turbulent maps can be characterized via their ω-limit sets [1]. We give a direct proof of this characterization and get stronger results, which allows us to obtain some other results on ω-limit sets, which previously were difficult to prove.
Among the many characterizations of the class of Baire one, Darboux real-valued functions of one real variable, the 1907 characterization of Young and the 1997 characterization of Agronsky, Ceder, and Pearson are particularly intriguing in that they yield interesting classes of functions when interpreted in the two-variable setting. We examine the relationship between these two subclasses of the real-valued Baire one defined on the unit square.
We establish two new norm convergence theorems for Henstock-Kurzweil integrals. In particular, we provide a unified approach for extending several results of R. P. Boas and P. Heywood from one-dimensional to multidimensional trigonometric series.
In this paper we refine an inequality for infinite series due to Astala, Gehring and Hayman, and sharpen and extend a Holder-type inequality due to Daykin and Eliezer.