Sufficient conditions for weighted Gabushin inequalities
Mathematics Subject Classification: 26A33 (main), 35A22, 78A25, 93A30The generalization of the concept of derivative to non-integer values goes back to the beginning of the theory of differential calculus. Nevertheless, its application in physics and engineering remained unexplored up to the last two decades. Recent research motivated the establishment of strategies taking advantage of the Fractional Calculus (FC) in the modeling and control of many phenomena. In fact, many classical engineering...
We present a new method to study the classical fractional integrals of Weyl. This new approach basically consists in considering these operators in the largest space where they make sense. In particular, we construct a theory of fractional integrals of Weyl by studying these operators in an appropriate Fréchet space. This is a function space which contains the -spaces, and it appears in a natural way if we wish to identify these fractional operators with fractional powers of a suitable non-negative...
We consider the summation equation, for , in the case where the map may change sign; here is a parameter, which may be understood as the order of an associated discrete fractional boundary value problem. In spite of the fact that is allowed to change sign, by introducing a new cone we are able to establish the existence of at least one positive solution to this problem by imposing some growth conditions on the functions and . Finally, as an application of the abstract existence result,...
The main purpose of this article is to give a new method and new results on a very old topic: the comparison of the Riemann processes of summation (R,κ) with other summation processes. The motivation comes from the study of continuous unimodular functions on the circle, their Fourier series and their winding numbers. My oral presentation in Poznań at the JM-100 conference exposed the ways by which this study was developed since the fundamental work of Brézis and Nirenberg on the topological degree...
It is shown that for every Darboux function F there is a non-constant continuous function f such that F + f is still Darboux. It is shown to be consistent - the model used is iterated Sacks forcing - that for every Darboux function F there is a nowhere constant continuous function f such that F + f is still Darboux. This answers questions raised in [5] where it is shown that in various models of set theory there are universally bad Darboux functions, Darboux functions whose sum with any nowhere...
In questo lavoro si studiano condizioni sufficienti sulla funzione peso , espresse in termini di integrabilità, per la validità della disuguaglianza dove denota una sfera in . Usando una tecnica di decomposizione di immersioni si dimostrano condizioni sufficienti in termini di appartenenza a spazi di Lebesgue, Lorentz-Orlicz e/o di tipo debole. Come applicazioni vengono fornite condizioni sufficienti per la proprietà forte di prolungamento unico per nelle dimensioni 2 e 3.
We characterize the set of all functions f of R to itself such that the associated superposition operator Tf: g → f º g maps the class BVp1(R) into itself. Here BVp1(R), 1 ≤ p < ∞, denotes the set of primitives of functions of bounded p-variation, endowed with a suitable norm. It turns out that such an operator is always bounded and sublinear. Also, consequences for the boundedness of superposition operators defined on Besov spaces Bp,qs are discussed.
In IMUJ Preprint 2009/05 we investigated the quasianalytic perturbation of hyperbolic polynomials and symmetric matrices by applying our quasianalytic version of the Abhyankar-Jung theorem from IMUJ Preprint 2009/02, whose proof relied on a theorem by Luengo on ν-quasiordinary polynomials. But those papers of ours were suspended after we had become aware that Luengo's paper contained an essential gap. This gave rise to our subsequent article on quasianalytic perturbation theory, which developed,...