The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Displaying 61 –
80 of
129
This article studies an integral representation of functionals of linear growth on metric measure spaces with a doubling measure and a Poincaré inequality. Such a functional is defined via relaxation, and it defines a Radon measure on the space. For the singular part of the functional, we get the expected integral representation with respect to the variation measure. A new feature is that in the representation for the absolutely continuous part, a constant appears already in the weighted Euclidean...
We study properties of the functionalF loc ( u,Ω ) : = inf ( u j ) lim inf j → ∞ ∫ Ω f ( ∇ u j ) d x , whereu ∈ BV(Ω;RN), and f:RN × n → R is continuous and satisfies 0 ≤ f(ξ) ≤ L(1 + | ξ | r). For r ∈ [1,2), assuming f has linear growth in certain rank-one directions, we combine a result of [A. Braides and A. Coscia, Proc. Roy. Soc. Edinburgh Sect. A 124 (1994) 737–756] with a new technique involving mollification to prove an upper bound for Floc. Then, for r ∈ [ 1 , n n − 1 ) , we prove that...
Some properties of strongly Wright-convex functions are presented. In particular it is shown that a function f:D → ℝ, where D is an open convex subset of an inner product space X, is strongly Wright-convex with modulus c if and only if it can be represented in the form f(x) = g(x)+a(x)+c||x||², x ∈ D, where g:D → ℝ is a convex function and a:X → ℝ is an additive function. A characterization of inner product spaces by strongly Wright-convex functions is also given.
For a function the notion of p-mean variation of order 1, is defined. It generalizes the concept of F. Riesz variation of functions on the real line ℝ¹ to ℝⁿ, n > 1. The characterisation of the Sobolev space in terms of is directly related to the characterisation of by Lipschitz type pointwise inequalities of Bojarski, Hajłasz and Strzelecki and to the Bourgain-Brezis-Mironescu approach.
We present comparison theorems for the weighted quasi-arithmetic means and for weighted Bajraktarević means without supposing in advance that the weights are the same.
We present several continuous embeddings of the critical Besov space . We first establish a Gagliardo-Nirenberg type estimate
,
for 1 < p ≤ q < ∞, 1 ≤ ν < ρ ≤ ∞ and the weight function with 0 < r < n. Next, we prove the corresponding Trudinger type estimate, and obtain it in terms of the embedding , where the function Φ₀ of the weighted Besov-Orlicz space is a Young function of the exponential type. Another point of interest is to embed into the weighted Besov space with...
Currently displaying 61 –
80 of
129