Displaying 821 – 840 of 882

Showing per page

On weak type inequalities for rare maximal functions

K. Hare, A. Stokolos (2000)

Colloquium Mathematicae

The properties of rare maximal functions (i.e. Hardy-Littlewood maximal functions associated with sparse families of intervals) are investigated. A simple criterion allows one to decide if a given rare maximal function satisfies a converse weak type inequality. The summability properties of rare maximal functions are also considered.

On weakly Gibson F σ -measurable mappings

Olena Karlova, Volodymyr Mykhaylyuk (2013)

Colloquium Mathematicae

A function f: X → Y between topological spaces is said to be a weakly Gibson function if f ( Ū ) f ( U ) ¯ for any open connected set U ⊆ X. We prove that if X is a locally connected hereditarily Baire space and Y is a T₁-space then an F σ -measurable mapping f: X → Y is weakly Gibson if and only if for any connected set C ⊆ X with dense connected interior the image f(C) is connected. Moreover, we show that each weakly Gibson F σ -measurable mapping f: ℝⁿ → Y, where Y is a T₁-space, has a connected graph.

On Whitney pairs

Marianna Csörnyei (1999)

Fundamenta Mathematicae

A simple arc ϕ is said to be a Whitney arc if there exists a non-constant function f such that    l i m x x 0 ( | f ( x ) - f ( x 0 ) | ) / ( | ϕ ( x ) - ϕ ( x 0 ) | ) = 0 for every x 0 . G. Petruska raised the question whether there exists a simple arc ϕ for which every subarc is a Whitney arc, but for which there is no parametrization satisfying    l i m t t 0 ( | t - t 0 | ) / ( | ϕ ( t ) - ϕ ( t 0 ) | ) = 0 . We answer this question partially, and study the structural properties of possible monotone, strictly monotone and VBG* functions f and associated Whitney arcs.

On Young's inequality.

Witkowski, Alfred (2006)

JIPAM. Journal of Inequalities in Pure & Applied Mathematics [electronic only]

On α -continuous functions

Dragan S. Janković, Ch. Konstadilaki-Savvopoulou (1992)

Mathematica Bohemica

Classes of functions continuous in various senses, in particular θ -continuous, α -continuous, feeblz continuous a.o., and relations between the classes, are studied.

On ω-convex functions

Tomasz Szostok (2011)

Banach Center Publications

In Orlicz spaces theory some strengthened version of the Jensen inequality is often used to obtain nice geometrical properties of the Orlicz space generated by the Orlicz function satisfying this inequality. Continuous functions satisfying the classical Jensen inequality are just convex which means that such functions may be described geometrically in the following way: a segment joining every pair of points of the graph lies above the graph of such a function. In the current paper we try to obtain...

Currently displaying 821 – 840 of 882