On the -primitive
Given a finite family of cliquish functions, , we can find a Lebesgue function such that is Darboux and quasi-continuous for every . This theorem is a generalization both of the theorem by H. W. Pu H. H. Pu and of the theorem by Z. Grande.
We investigate the topological structure of the space 𝓓ℬ₁ of bounded Darboux Baire 1 functions on [0,1] with the metric of uniform convergence and with the p*-topology. We also investigate some properties of the set Δ of bounded derivatives.
In this paper a full totalization is presented of the Kurzweil-Henstock integral in the multidimensional space. A residual function of the total Kurzweil-Henstock primitive is defined.
2000 Mathematics Subject Classification: Primary 26A33, 30C45; Secondary 33A35Recently, many papers in the theory of univalent functions have been devoted to mapping and characterization properties of various linear integral or integro-differential operators in the class S (of normalized analytic and univalent functions in the open unit disk U), and in its subclasses (as the classes S∗ of the starlike functions and K of the convex functions in U). Among these operators, two operators introduced...
We discuss variations of functions that provide conceptually similar descriptive definitions of the Lebesgue and Denjoy-Perron integrals.
Let be a normed linear space. We investigate properties of vector functions of bounded convexity. In particular, we prove that such functions coincide with the delta-convex mappings admitting a Lipschitz control function, and that convexity is equal to the variation of on . As an application, we give a simple alternative proof of an unpublished result of the first author, containing an estimate of convexity of a composed mapping.
We consider and study several weak formulations of the Hessian determinant, arising by formal integration by parts. Our main concern are their continuity properties. We also compare them with the Hessian measure.
The properties of rare maximal functions (i.e. Hardy-Littlewood maximal functions associated with sparse families of intervals) are investigated. A simple criterion allows one to decide if a given rare maximal function satisfies a converse weak type inequality. The summability properties of rare maximal functions are also considered.
A function f: X → Y between topological spaces is said to be a weakly Gibson function if for any open connected set U ⊆ X. We prove that if X is a locally connected hereditarily Baire space and Y is a T₁-space then an -measurable mapping f: X → Y is weakly Gibson if and only if for any connected set C ⊆ X with dense connected interior the image f(C) is connected. Moreover, we show that each weakly Gibson -measurable mapping f: ℝⁿ → Y, where Y is a T₁-space, has a connected graph.