Displaying 101 – 120 of 471

Showing per page

Solution to the gradient problem of C.E. Weil.

Zoltán Buczolich (2005)

Revista Matemática Iberoamericana

In this paper we give a complete answer to the famous gradient problem of C. E. Weil. On an open set G ⊂ R2 we construct a differentiable function f: G → R for which there exists an open set Ω1 ⊂ R2 such that ∇f(p) ∈ Ω1 for a p ∈ G but ∇f(q) ∉ Ω1 for almost every q ∈ G. This shows that the Denjoy-Clarkson property does not hold in higher dimensions.

Solutions d'un système d'équations analytiques réelles et applications

Jean-Claude Tougeron (1976)

Annales de l'institut Fourier

On démontre que toute solution formelle y ( x ) d’un système d’équations analytiques réelles (resp. polynomiales réelles) f ( x , y ) = 0 , se relève en une solution C homotope à une solution analytique (resp. à une solution de Nash) aussi proche que l’on veut de y ( x ) pour la topologie de Krull. On utilise ce théorème pour démontrer l’algébricité (ou l’analyticité) de certains idéaux de R { x } (ou R [ [ x ] ] ), et aussi pour construire des déformations analytiques de germes d’ensembles analytiques en germes d’ensembles de Nash.

Solutions with big graph of iterative functional equations of the first order

Lech Bartłomiejczyk (1999)

Colloquium Mathematicae

We obtain a result on the existence of a solution with big graph of functional equations of the form g(x,𝜑(x),𝜑(f(x)))=0 and we show that it is applicable to some important equations, both linear and nonlinear, including those of Abel, Böttcher and Schröder. The graph of such a solution 𝜑 has some strange properties: it is dense and connected, has full outer measure and is topologically big.

Solvability of an Infinite System of Singular Integral Equations

El Borai, Mahmoud M., Abbas, Mohamed I. (2007)

Serdica Mathematical Journal

2000 Mathematics Subject Classification: 45G15, 26A33, 32A55, 46E15.Schauder's fixed point theorem is used to establish an existence result for an infinite system of singular integral equations in the form: (1) xi(t) = ai(t)+ ∫t0 (t − s)− α (s, x1(s), x2(s), …) ds, where i = 1,2,…, α ∈ (0,1) and t ∈ I = [0,T]. The result obtained is applied to show the solvability of an infinite system of differential equation of fractional orders.

Solving Fractional Diffusion-Wave Equations Using a New Iterative Method

Daftardar-Gejji, Varsha, Bhalekar, Sachin (2008)

Fractional Calculus and Applied Analysis

Mathematics Subject Classification: 26A33, 31B10In the present paper a New Iterative Method [1] has been employed to find solutions of linear and non-linear fractional diffusion-wave equations. Illustrative examples are solved to demonstrate the efficiency of the method.* This work has partially been supported by the grant F. No. 31-82/2005(SR) from the University Grants Commission, N. Delhi, India.

Some applications of Kurzweil-Henstock integration

Rudolf Výborný (1993)

Mathematica Bohemica

Applications of ideal from Kurzweil-Henstock integration to elementary analysis on 𝐑 , mean value theorems for vector valued functions, l’Hospital rule, theorems of Taylor type and path independence of line integrals are discussed.

Currently displaying 101 – 120 of 471