Displaying 1281 – 1300 of 4583

Showing per page

Existence results for impulsive fractional differential equations with p -Laplacian via variational methods

John R. Graef, Shapour Heidarkhani, Lingju Kong, Shahin Moradi (2022)

Mathematica Bohemica

This paper presents several sufficient conditions for the existence of at least one classical solution to impulsive fractional differential equations with a p -Laplacian and Dirichlet boundary conditions. Our technical approach is based on variational methods. Some recent results are extended and improved. Moreover, a concrete example of an application is presented.

Existence results for systems of conformable fractional differential equations

Bouharket Bendouma, Alberto Cabada, Ahmed Hammoudi (2019)

Archivum Mathematicum

In this article, we study the existence of solutions to systems of conformable fractional differential equations with periodic boundary value or initial value conditions. where the right member of the system is L α 1 -carathéodory function. We employ the method of solution-tube and Schauder’s fixed-point theorem.

Expansions of the real line by open sets: o-minimality and open cores

Chris Miller, Patrick Speissegger (1999)

Fundamenta Mathematicae

The open core of a structure ℜ := (ℝ,<,...) is defined to be the reduct (in the sense of definability) of ℜ generated by all of its definable open sets. If the open core of ℜ is o-minimal, then the topological closure of any definable set has finitely many connected components. We show that if every definable subset of ℝ is finite or uncountable, or if ℜ defines addition and multiplication and every definable open subset of ℝ has finitely many connected components, then the open core of ℜ is...

Explicit Construction of Piecewise Affine Mappings with Constraints

Waldemar Pompe (2010)

Bulletin of the Polish Academy of Sciences. Mathematics

We construct explicitly piecewise affine mappings u:ℝ ⁿ → ℝ ⁿ with affine boundary data satisfying the constraint div u = 0. As an application of the construction we give short and direct proofs of the main approximation lemmas with constraints in convex integration theory. Our approach provides direct proofs avoiding approximation by smooth mappings and works in all dimensions n ≥ 2. After a slight modification of our construction, the constraint div u = 0 can be turned into det Du = 1, giving...

Explicit extension maps in intersections of non-quasi-analytic classes

Jean Schmets, Manuel Valdivia (2005)

Annales Polonici Mathematici

We deal with projective limits of classes of functions and prove that: (a) the Chebyshev polynomials constitute an absolute Schauder basis of the nuclear Fréchet spaces ( ) ( [ - 1 , 1 ] r ) ; (b) there is no continuous linear extension map from Λ ( ) ( r ) into ( ) ( r ) ; (c) under some additional assumption on , there is an explicit extension map from ( ) ( [ - 1 , 1 ] r ) into ( ) ( [ - 2 , 2 ] r ) by use of a modification of the Chebyshev polynomials. These results extend the corresponding ones obtained by Beaugendre in [1] and [2].

Currently displaying 1281 – 1300 of 4583