The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying 1621 – 1640 of 4583

Showing per page

Heat kernel estimates for critical fractional diffusion operators

Longjie Xie, Xicheng Zhang (2014)

Studia Mathematica

We construct the heat kernel of the 1/2-order Laplacian perturbed by a first-order gradient term in Hölder spaces and a zero-order potential term in a generalized Kato class, and obtain sharp two-sided estimates as well as a gradient estimate of the heat kernel, where the proof of the lower bound is based on a probabilistic approach.

Henstock-Kurzweil and McShane product integration; descriptive definitions

Antonín Slavík, Štefan Schwabik (2008)

Czechoslovak Mathematical Journal

The Henstock-Kurzweil and McShane product integrals generalize the notion of the Riemann product integral. We study properties of the corresponding indefinite integrals (i.e. product integrals considered as functions of the upper bound of integration). It is shown that the indefinite McShane product integral of a matrix-valued function A is absolutely continuous. As a consequence we obtain that the McShane product integral of A over [ a , b ] exists and is invertible if and only if A is Bochner integrable...

Henstock-Kurzweil integral on BV sets

Jan Malý, Washek Frank Pfeffer (2016)

Mathematica Bohemica

The generalized Riemann integral of Pfeffer (1991) is defined on all bounded BV subsets of n , but it is additive only with respect to pairs of disjoint sets whose closures intersect in a set of σ -finite Hausdorff measure of codimension one. Imposing a stronger regularity condition on partitions of BV sets, we define a Riemann-type integral which satisfies the usual additivity condition and extends the integral of Pfeffer. The new integral is lipeomorphism-invariant and closed with respect to the formation...

Hereditarily Hurewicz spaces and Arhangel'skii sheaf amalgamations

Boaz Tsaban, Lubomyr Zdomsky (2012)

Journal of the European Mathematical Society

A classical theorem of Hurewicz characterizes spaces with the Hurewicz covering property as those having bounded continuous images in the Baire space. We give a similar characterization for spaces X which have the Hurewicz property hereditarily. We proceed to consider the class of Arhangel’skii α 1 spaces, for which every sheaf at a point can be amalgamated in a natural way. Let C p ( X ) denote the space of continuous real-valued functions on X with the topology of pointwise convergence. Our main result...

Hessian determinants as elements of dual Sobolev spaces

Teresa Radice (2014)

Studia Mathematica

In this short note we present new integral formulas for the Hessian determinant. We use them for new definitions of Hessian under minimal regularity assumptions. The Hessian becomes a continuous linear functional on a Sobolev space.

Hidden structures in the class of convex functions and a new duality transform

Shiri Artstein-Avidan, Vitali Milman (2011)

Journal of the European Mathematical Society

Our main intention in this paper is to demonstrate how some seemingly purely geometric notions can be presented and understood in an analytic language of inequalities and then, with this understanding, can be defined for classes of functions and reveal new and hidden structures in these classes. One main example which we discovered is a new duality transform for convex non-negative functions on n attaining the value 0 at the origin (which we call “geometric convex functions”). This transform, together...

Currently displaying 1621 – 1640 of 4583